Syntax-Directed Variational Autoencoder for
Molecule Generation

Hanjun Dai'*, Yingtao Tian**, Bo Dai!, Steven Skiena?, Le Song!
! College of Computing, Georgia Institute of Technology
2 Department of Computer Science, Stony Brook University
! {hanjundai, bodail}@gatech.edu, lsong@cc.gatech.edu
2yittian, skiena@cs.stonybrook.edu

Abstract

Deep generative models have been enjoying success in modeling continuous data.
However it remains challenging to capture the representations for discrete struc-
tures with formal grammars and semantics. How to generate both syntactically and
semantically correct data still remains largely an open problem. Inspired by the
theory of compiler where syntax and semantics check is done via syntax-directed
translation (SDT), we propose a novel syntax-directed variational autoencoder
(SD-VAE) by introducing stochastic lazy attributes. This approach converts the
offline SDT check into on-the-fly generated guidance for constraining the decoder.
Comparing to the state-of-the-art methods, our approach enforces constraints on
the output space so that the output will be not only syntactically valid, but also se-
mantically reasonable. We evaluate the proposed model with applications including
reconstruction and molecule optimization. The results demonstrate the effective-
ness in incorporating syntactic and semantic constraints in discrete generative
models, which is significantly better than current state-of-the-art approaches.

1 Introduction

Recent advances in deep representation learning have resulted in powerful probabilistic generative
models which have demonstrated their ability on modeling continuous data, e.g., time series sig-
nals [[Oord et al.| 2016, |Dai et al., [2017]] and images [Radford et al., [2015]]. Despite the success in
these domains, it is still challenging to correctly generate discrete structured data, such as graphs and
molecules. Since many of the structures have syntax and semantic formalisms, the generative models
without explicit constraints often produces invalid ones.

Conceptually an approach in generative model for structured data can be divided in two parts, one
being the formalization of the structure generation and the other one being a (usually deep) generative
model producing parameters for stochastic process in that formalization. Often the hope is that with
the help of training samples and capacity of deep models, the loss function will prefer the valid
patterns and encourage the mass of the distribution of the generative model towards the desired region
automatically.

Arguably the simplest structured data are sequences, whose generation with deep model has been
well studied under the seq2seq [Sutskever et al., 2014] framework that models the generation of
sequence as a series of token choices parameterized by recurrent neural networks (RNNs). Its
widespread success has encourage several pioneer works that consider the serialization of more
complex structure data into sequences and apply sequence models to the represented sequences.
Gomez-Bombarelli et al.|[2016] (CVAE) is a representative work of such paradigm for the chemical
molecule generation, using the SMILES line notation [Weininger, | 1988]| for representing molecules.
However, because of the lack of formalization of syntax and semantics serving as the restriction of
the particular structured data, underfitted general-purpose string generative models will often lead

*Both authors contributed equally to the paper.
31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.

Structured data decoding space

(const » const)

1{ I

Boa; CVAE
printf(: . b); (arbitrary string)
VAE

molecules

Figure 1: Illustrations of structure data decoding space with respect to different algorithms. The
seq2seq model is the most flexible one with least constraints. Model with CFG constraints will output
syntax correct data. Our proposed model with attribute grammar reshapes the output space tighter to
the target meaningful space.

to invalid outputs. Therefore, to obtain a reasonable model via such training procedure, we need to
prepare large amount of valid combinations of the structures, which in general is not practical.

To tackle such a challenge, one approach is to incorporate the structure restrictions explicitly into the
generative model. For the considerations of computational cost and model generality, context-free
grammars (CFG) have been taken into account in the decoder parametrization. For instance, in
molecule generation tasks, [Kusner et al.|[2017]] proposes a grammar variational autoencoder (GVAE)
in which the CFG of SMILES notation is embedded into the decoder. The model generates the parse
trees directly in a top-down direction, by repeatedly expanding any nonterminal with its production
rules. Although the CFG provides a mechanism for generating syntactic valid objects, it is still
incapable to regularize the model for generating semantic valid objects [Kusner et al.,[2017]]. For
example, in molecule generation, the semantic of the SMILES languages requires that the rings
generated must be closed. This example requires cross-serial dependencies which are not enforceable
by CFG, implying that more constraints beyond CFG are needed to achieve semantic valid production.

In the theory of compiler, attribute grammars, or syntax-directed definition has been proposed for
attaching semantics to a tree yield of context-free grammar. That is, semantics are attached to
an already materialized sequence and its CFG generating tree, thus one straightforward but not
practical application of attribute grammars is, after generating a syntactic valid molecule candidate,
to conduct offline semantic checking. This process needs to be repeated until a semantically valid
one is discovered, which is computationally inefficient and in the worst case infeasible, due to
extremely low rate of passing checking. As a remedy, we propose the syntax-direct variational
autoencoder (SD-VAE), in which a semantic restriction component is advanced to the stage of syntax
tree generator. This allows the generator with both syntactic and semantic validation. The proposed
syntax-direct generative mechanism in the decoder further constraints the output space to ensure the
semantic correctness in the tree generation process. The relationships between our proposed model
and previous models can be characterized in Figure

Our method brings theory of formal language into stochastic generative model. The contribution of
our paper can be summarized as follows:

e Syntax and semantics enforcement: We propose a new formalization of semantics that systemati-
cally converts the offline semantic check into online guidance for stochastic generation using the
proposed stochastic lazy attribute. This allows us effectively address both syntax and semantic
constraints.

o Efficient learning and inference: Our approach has computational cost O(n) where n is the length
of structured data. This is the same as existing methods like CVAE and GVAE which do not
enforce semantics in generation.

o Strong empirical performance: We demonstrate the effectiveness of the SD-VAE through applica-
tions in molecules. Our approach consistently and significantly improves the results in evaluations
including generation, reconstruction and optimization.

2 Background

Before introducing our model and the learning algorithm, we first provide some background knowl-
edge which is important for understanding the proposed method.

2.1 Variational Autoencoder

The variational autoencoder [Kingma and Welling, 2013} Rezende et al., 2014 provides a framework
for learning the probabilistic generative model as well as its posterior, respectively known as decoder
and encoder. We denote the observation as xz, which is the structured data in our case, and the
latent variable as z. The decoder is modeling the probabilistic generative processes of = given the
continuous representation z through the likelihood pg (z|z) and the prior over the latent variables p(z),
where 6 denotes the parameters. The encoder approximates the posterior py(z|x) x pg(z|2)p(2)
with a model g, (z|x) parametrized by 1. The decoder and encoder are learned simultaneously by
maximizing the evidence lower bound (ELBO) of the marginal likelihood, i.e.,

L(X;0,v¢):= Z Eq(z12) log po(x|2)p(2) — log gy (2]x)] < Z log/pg(a;|z)p(z)dz, (1)

rzeX reX
where X denotes the training datasets containing the observations.

2.2 Context Free Grammar and Attribute Grammar

Context free grammar A context free grammar (CFG) is defined as G = (V, X, R, s), where
symbols are divided into V), the set of non-terminal symbols, 3, the set of terminal symbols and
s €V, the start symbol. Here R is the set of production rules. Each production rule r € R is denoted
asr = a — (3, where a € V' is a nonterminal, and 3 = ujus ... ujg € (VU %) is a sequence of
terminals and/or nonterminals.

Attribute grammar To enrich the CFG with “semantic meaning”, [Knuth| [1968]] formalizes
attribute grammar that introduces attributes and rules to CFG. The attribute is an attachment to the
corresponding nonterminal symbol in CFG, written in the format (v) . a where (v) € V. There can be
two types of attributes assigned to non-terminals in G: the inherited attributes and the synthesized
attributes. An inherited attribute depends on the attributes from its parent and siblings, while a
synthesized attribute is computed based on the attributes of its children. Formally, for a production
ug — urUz . .. u|g|, we denote I(u;) and S(u;) be the (disjoint) sets of inherited and synthesized
attributes of u;, ¢ € {0,...,|B8|}.

2.2.1 A motivational example

We here exemplify how the above defined attribute grammar enriches CFG with non-context-free
semantics. We use the following toy grammar, a subset of SMILES that generates either a chain or a
cycle with three carbons.

Production Semantic Rule
(s) — (atom), ‘C’ (atom)s (s) .matched < (atom), .set [(atom)s .set,

(s) .ok < (atom),.set = (s).matched = (atom); .set
(atom) — C’ | ’C’ (bond) (digit) (atom) . set < @ | concat({bond) .val, (digit) .val)
(bond) — =" 1="1# (bond) .val « =" | =" | ‘&’
(digit) — ‘12 1...1°9 (digit) .val « 1 12" .| ‘9’

where we show the production rules in CFG with — on the left, and the calculation of attributes in
attribute grammar with <— on the left. Here we leverage the attribute grammar to check (with attribute
matched) whether the ringbonds come in pairs: a ringbond generated at (afom); should match the
bond type and bond index that generated at (atom)s, also the semantic constraint expressed by (s) . ok
requires that there is no difference between the set attribute of (arom); and (atom),. Actually such
constraint in SMILES is known as cross-serial dependencies (CSD) [Bresnan et al.,|1982]] which is
non-context-free [[Shieber] 1985[]. Another example of CSD is a sequence of multiple different types
of parentheses where each separately balanced disregarding the others. Figure [2a] further illustrates
the example. Here all the attributes are synthetic, i.e., calculated in a bottom-up direction.

In the semantic correctness checking procedure, one need to perform (possibly multiple) bottom-up
and top-down procedures for calculating the attributes after the parse tree is generated, however,
in the structure generating process, the parse tree is not ready for semantic checking, since the
synthesized attributes coming from children are not generated yet. Due to such dilemma, it is
nontrivial to use the attribute grammar to guide the top-down generation of the tree-structured data.

Bottom-up Attribute Grammar matched={"-1"} N {*-1'}
ok=True

P set={"-1"}
<atom>; <atom>,

c igi <digit> C i <b0>d> /D C dhgib

N \

\ \
1 1
1 - 1 . 1

/- Synthesized Attribute

Start symbol \ Start symbol /- Stochastic Lazy Attribute
. Synthesize dependency =\ Lazy evaluation of
WErmiEls Nonterminals ~ = Synthesized attribute
. Semantics: ringbonds come in -
Te [i Inherit d d
erminals pairs (cross serial dependency) Terminals AIAEHS sy
(a) Bottom-up semantics check. (b) Top-down tree generation.

Figure 2: Illustrations of (a) the bottom-up semantic checking following attribute grammar, and (b)
the top-down tree generation with semantic validation with stochastic attribute grammar.

Algorithm 1 Decoding with Stochastic Syntax-Directed Decoder

1: Global variables: CFG: G = (V, X, R, s), decoder network parameters
2: procedure GENTREE(node, T)
3: Sample stochastic lazy attribute node.sq ~ Bg(sa|node, T) > when introduced on node
4: Sample production rule 7 = (o —) € R ~ pg(r|ctz, node, T). > The conditioned
variables encodes the semantic constraints in tree generation.
5 ctx < RNN(ctx,r) > update context vector
6 fori=1,...,|8| do
7 v; < Node(u;, node, {v; };;11) > node creation wtih parent and siblings’ attributes
8: GenTree(v;, T) > recursive generation of children nodes
9 Update synthetic and stochastic attributes of node with v; > Lazy linking
10 end for
11: end procedure

One straightforward way is using acceptance-rejection sampling scheme, i.e., using the CFG decoder
in grammar VAE Kusner et al.|[2017] as a proposal and the semantic checking as the threshold. It is
obvious that since the decoder does not include semantic guidance, the proposal distribution may
raise semantically invalid candidate frequently, therefore, wasting the computational cost in vain.

3 Syntax-Directed Variational Autoencoder

As described in Section [2.2.] directly using attribute grammar to address both syntax and semantics
constraints is not efficient. In this section we describe how to bring forward the attribute grammar
online and incorporate it into variational autoencoders such that our VAE generates both syntactic
and semantic valid outputs by definition. We name our proposed method Syntax-Directed Variational
Autoencoder (SD-VAE).

3.1 Stochastic Syntax-Directed Decoder

By scrutinizing the tree generation, the major difficulty in incorporating the attributes grammar into
the processes is the appearance of the synthesized attributes. For instance, when expanding the start
symbol (s), the corresponding synthesized attribute (s).matched is not ready yet. Since none of its
children is generated, their synthesized attributes are also absent at this time, making the (s).matched
unable to be computed. To enable the on-the-fly computation of the synthesized attributes for semantic
validation during tree generation, besides the two types of attributes, we introduce the stochastic
lazy attributes to enlarge the existing attribute grammar, so that the synthesized attributes will be
transformed to inherited constraints in generating procedure and instantiated once all the dependent
attributes are ready (also named as lazy linking in the following content).

We demonstrate how the decoder with stochastic lazy attributes will generate semantic valid output
through a pedagogical example with the subset of SMILES grammar in figure 2(b). Following the
terminology in compiler theory, we named it as stochastic syntax-directed decoder.

The tree generation procedure is indeed sampling from the decoder py(z|z), which can be decomposed
into several steps that elaborated below:

i) stochastic predetermination: in figure b), we start from the node (s) with the synthesized at-
tributes (s).matched determining the index and bond type of the ringbond that will be matched at node
(s). Since we know nothing about the children nodes right now, the only thing we can do is to ‘guess’
a value. That is to say, we associate a stochastic attribute (s).sa € {0,1}" ~]_[l(’w:“1 B(sa;|z;p)
as a predetermination for the sake of the absence of synthesized attribute (s).matched. B(-) is the
bernoulli distribution. Here C|, is the maximum cardinality possible[]_-]for the corresponding attribute
a. In above example, the 0 indicates no ringbond and 1 indicates one ringbond at both (afom); and
(atom)s, respectively.

ii) constraints as inherited attributes: we pass the (s).sa as inherited constraints to the children
of node (s), i.e., (atom); and (atom)s to ensure the semantic validation in the tree generation.

iii) sampling under constraints: assume in the valid order, {afom) is selected before (atom)s, we
then sample the rules from py(r|{atom)1, (s), z) for expanding (atom)1, and so on and so forth to
generate the subtree recursively. Since we carefully designed sampling distribution that is conditioning
on the stochastic property, the inherited constraints will be eventually satisfied. In the example, due
to the (s).sa = 1, when expanding (afom), the sampling distribution py (r|{atom)y, (s}, z) only
has positive mass on rule (atom) — ‘C? (bond) (digit).

iv) lazy linking: once we complete the generation of the subtree rooted at {(afom)1, the synthesized
attribute (atom);.set is now available. According to the semantic rule for (s).matched, we can
instantiate (s).matched = (atom);.set = {*-1’}. When expanding (afom)s, the (s).matched will
be passed down as inherited attribute to regulate the generation of (afom)s.

In summary, the general syntax tree 7 € L(G) can be constructed step by step, within the languages
L(G) covered by grammar G. In the beginning, T©) = root, where 700t symbot = S Which contains
only the start symbol s. At step ¢, we will choose an nonterminal node in the frontie;JE] of partially
generated tree 7 (*) to expand. The generative process in each step ¢ = 0, 1, ... can be described as:
1. Pick node v(*) € Fr(T®) where its attributes needed are either satisfied, or are stochastic
attributes that should be sampled first according to bernoulli distribution B(-|[v("), T(®));
2. Sample rule r® = oY) — B € R according to distribution pg(r® |v® 7)), where
0O sympor = a®, and O = ugt)u;t) .. 'ul(;)(”\’ i.e., expand the nonterminal with produc-
tion rules defined in CFG.

0)
3. 7D = 7O UY{(0®, w2 e, grow the tree by attaching 8®) to v(*). Now the
node v® will have children represented by symbols in 5(*).

The above process continues until all the nodes in the frontier of 7(7) are all terminals after T" steps.
Then, we obtain the algorithm [I| for sampling both syntactic and semantic valid structures.

In fact, in the model training phase, we need to compute the likelihood py(z|z) given x and 2. The
probability computation procedure is similar to the sampling procedure in the sense that both of them
requires tree generation. The only difference is that in the likelihood computation procedure, the
tree structure, i.e., the computing path, is fixed since x is given, while in sampling procedure, it is
sampled following the learned model. Specifically, the generative likelihood can be written as:

T
po(x|z) = Hpg(rt\cta:(t),node(t), TO)YBy(sa|node® , T®) (2)
t=0

where ctz(®) = z and ctz(¥) = RNN(ry, ctz(*~1)). Here RNN can be commonly used LSTM, ec..

3.2 Structure-Based Encoder

As we introduced in section the encoder, ¢y (z|) approximates the posterior of the latent variable
through the model with some parametrized function with parameters). Since the structure in
the observation x plays an important role, the encoder parametrization should take care of such
information. The recently developed deep learning models [Duvenaud et al.,|2015| |Dai et al., 2016,

"Note that setting threshold for C,, assumes a mildly context sensitive grammar (e.g., limited CSD).
Here frontier is the set of all nonterminal leaves in current tree.

Lei et al., [2017] provide powerful candidates as encoder. However, to demonstrate the benefits of the
proposed syntax-directed decoder in incorporating the attribute grammar for semantic restrictions,
we will exploit the same encoder in Kusner et al.|[2017] for a fair comparison later.

We provide a brief introduction to the particular encoder model used in |Kusner et al.|[2017] for a
self-contained purpose. Given a SMILES sequence, we obtain the corresponding parse tree using
CFG and decompose it into a sequence of productions through a pre-order traversal on the tree. Then,
we convert these productions into one-hot indicator vectors, in which each dimension corresponds to
one production in the grammar. We will use a deep convolution neural networks which maps this
sequence of one-hot vectors to a continuous vector as the encoder.

3.3 Model Learning

Our learning goal is to maximize the evidence lower bound in Eq[I] During training, each instance x
is first parsed into syntax tree with CFG parser. Given the encoder, we can then map the structure
input into latent space z. The variational posterior ¢(z|x) is parameterized with Gaussian distribution,
where the mean and variance are the output of corresponding neural networks. The prior of latent
variable p(z) = N(0, I). Since both the prior and posterior are Gaussian, we use the closed form of
KL-divergence that proposed in [Kingma and Welling|[2013]]. In the decoding stage, our goal is to
maximize pg(z|z). Using the Algorithm we can compute the corresponding conditional likelihood.

For efficient learning, during the training time we divide the calculation in our stochastic decoder
into two phases: the first phase generates tree and the second phase only consists of a sequence of
updates to the context vector. This decoupling is possible since in training time we know the all
decisions in the decoder since the tree’s calculation is deterministic. In doing so, the first phase can
be accelerated using multiple CPU cores in parallel and the second one can effectively computed
using any mini-batch batch optimization on GPU. In practice, we observe no significant time penalty
measured in wall clock time compared to previous works.

4 Related work

Generative models with discrete structured data have raised increasing interests among researchers in
different domains. The classical sequence to sequence model [Sutskever et al.,[2014]] and its variations
have also been applied to molecules [Gémez-Bombarelli et al., [2016]]. Since the model is quite
flexible, it is hard to generate valid structures with limited data. Techniques including data augmenta-
tion [Bjerruml 2017]], active learning [Janz et al.||2017] and reinforcement learning [[Guimaraes et al.|
2017] have also been proposed to tackle this issue. However, according to the empirical evaluations
from Benhendal[2017], the validity is still not satisfactory. Even when the validity is enforced, the
models tend to overfit to simple structures while neglect the diversity.

Since the structured data often comes with formal grammars, it is very helpful to generate its parse
tree derived from CFG, instead of generating sequence of tokens directly. The Grammar VAE|Kusner
et al.,[2017]] introduced the CFG constrained decoder for simple math expression and SMILES string
generation. The rules are used to mask out invalid syntax such that the generated sequence is always
from the language defined by its CFG. Parisotto et al.|[2016]] uses a RecursiveReverse-Recursive
Neural Network (R3NN) to capture global context information while expanding with CFG production
rules. Although these works follows the syntax via CFG, the context sensitive information can only
be captured using variants of sequence/tree RNNs [[Alvarez-Melis and Jaakkolal 2016, [Dong and!
Lapata, 2016, Zhang et al.| 2015]], which may not be time and sample efficient.

In our work, we capture the semantics with proposed stochastic lazy attributes when generating
structured outputs. By addressing the most common semantics to harness the deep networks, it can
greatly reshape the output domain of decoder [[Hu et al.,2016]. As a result, we can also get a better
generative model for discrete structures.

5 Experiments

We compare our method with GVAE Kusner et al|[2017] and CVAE |Gémez-Bombarelli et al.|[2016]
(a character variational autoencoder) using the protocols for experiments that are set up in |Kusner
et al. [2017]]. The dataset contains 250, 000 SMILES string, prepared by [Kusner et al.|[2017] using
randomly extraction from the ZINC database [GOomez-Bombarelli et al., 2016]]. We use 5000 SMILES
strings as the holdout set for testing and the reset for training. For syntax, our formalization of
SMILES follows the grammar specified in Appendix [A] For our SD-VAE, we address some of the

Method Reconstruction % Valid Prior % Method LL RMSE

SD-VAE 76.2 43.5 CVAE -1.812 + 0.004 1.504 + 0.006
GVAE 53.7 7.2 GVAE -1.739 + 0.004 1.404 + 0.006
CVAE 44.6 0.7 SD-VAE -1.697 £+ 0.015 1.366 + 0.023

(a) Reconstruction Accuracy and Prior Validity using (b) Predictive performance using encoded mean

Monte Carlo estimation. Our proposed method (SD- latent vector. Test LL and RMSE are reported.

VAE) performance significantly better than baselines.

most common semantics: @) ringbonds should satisfy cross-serial dependencies, b) explicit valence
of atoms should not go beyond permitted.

5.1 Reconstruction Accuracy and Prior Validity

One metric of the soundness of VAE is to measure the ability of the model to encode data into a
representation in the latent space and reconstruct the input by decoding from that point. Another
metric is how often the model can decode into a valid data when the prior is randomly sampled.
Since both encoding and decoding are stochastic, we follow the estimation by Monte Carlo method
similar to that proposed in |Kusner et al.| [2017]. The CVAE and GVAE results are included directly
from [Kusner et al|[2017]. We show in the right part of Table [Ta] that our model produces a much
higher rate of successful reconstruction, and a large increase in ratio of valid prior. Note that the
results we reported only partially take the semantics of aromaticity into account. If we use an
equivalent kekulization form of SMILES to train the model, then the valid portion of prior can go up
to 97.3%.

5.2 Bayesian Optimization

The variational autoencoder realizes the conversion from molecule space to a continuous latent space
via the encoder and vice versa via the decoder. This naturally leads to following two important
applications: First, we can now train an extra model that predicts the data’s property from the
representation in latent space, as suggested in (Gomez-Bombarelli et al.| [2016]. Second and more
importantly, the continuous nature of latent space makes possible the optimization of finding new
data with better properties. Following the protocol used in |Kusner et al.|[2017], we use Bayesian
Optimization (BO) to search the molecules with desired properties in latent space.

In this section, we ask the model to optimize for octanol-water partition coefficients (a.k.a log P), an
important measurement of drug-likeness of a given molecule. As|Goémez-Bombarelli et al.|[2016]
suggests, for drug-likeness assessment log P is penalized by other properties including synthetic
accessibility score [Ertl and Schuffenhauer, 2009]. In Figure 3| we show the the top-3 best molecules
found by each method, where our method found molecules with much better scores than previous
works. Also the structures are richer than baselines (which mainly contain a chain structure).

CVAE GVAE SDVAE
1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd
& P d o4 , 9 o | 4 o Q¢
1o o5 853 09° o | Pey Y c 0
e ‘)?fjr o8 24 59 oo & ‘Jl‘{)f T B g & o
3) o Sod @ o9 P & (@€ SpCp
B & 3 3 ;o o0 &9 145, 00 % ¢ ({(Q P
2P oY T e ¥ P) C P
29 108 B 142 #0119 294 @° 2.89 © 2.80 ~‘é°9°\ 4.04 O 3.50

Figure 3: Best top-3 molecules and the corresponding scores found by each method using Bayesian
Optimization.

5.3 Predictive performance of latent representation

We seek to to know how well our latent space predicts the properties of molecules. We train the
same sparse Gaussian Process as in Sec[5.2] with the same target value (namely the drug-likeness
for molecules) for regression. We test the performance in the hold-out test dataset. In Table|1b} we
report the result in Log Likelihood (LL) and Regression Mean Square Error (RMSE), which show
that our SD-VAE always produces latent space that are more discriminative than both CVAE and
GVAE baselines. This also shows that, with a properly designed decoder, the quality of encoder will
also be improved via end2end training.

Similarity Metric ~ MorganFp MACCS PairFp TopologicalFp

GVAE 092+0.10 083+0.15 094+0.10 0.71+0.14
SD-VAE 092+0.09 083+£013 095+0.08 0.75+0.14

Table 2: Diversity as statistics from pair-wise distances measured as 1 — s, where s is one of the
similarity metrics. So higher values indicate better diversity. We show mean =+ stddev of (120) pairs
among 100 molecules. Note that we report results from GVAE and our SD-VAE, because CVAE has

very low valid priors, thus completely only failing this evaluation protocol.

5.4 Diversity of generated molecules

Inspired by Benhenda|[2017], here we seek to measure the diversity of generated molecules as an
assessment of our methods. The intuition is that a good generative model should be able to generate
diverse data and avoid model collapse in the learned space. In detail, we conduct this experiment
in SMILES dataset, where we sample 100 points from the prior distribution, and for each point, we
associate it as a molecule, which is the most frequent occurring valid SMILES decoded from 200
decoding attempts since the decoding is stochastic. We then, with one of several molecular similarity,
compute the pair-wise similarity and report the mean and standard deviation in Table[2] We see both
our method and] baseline do not have the model collapse problem, and the diversities with respect to
different measurements are comparable. It indicates that although our method has more restricted
decoding space than baselines, the diversity is not sacrificed. This is because we never rule-out the
valid molecules.

5.5 Visualizing the Latent Space

We seek to visualize the latent space as an assessment of how well our generative model is able to
produces a coherent and smooth space of molecules. We visualize the latent space in 2 dimensions.
We first embed a random molecule into latent space. Then we randomly generate 2 orthogonal unit
vectors A. To get the latent representation of neighborhood, we interpolate the 2-D grid and project
back to latent space with pseudo inverse of A. Finally we show decoded molecules. In Figure] we
present two of such grid visualizations. Subjectively compared with figures in |[Kusner et al.| [2017]],
our visualization is characterized by having smooth differences between neighboring molecules, and
more complicated decoded structures.

v T oD, QR g g e 6l $ad ad sl R Y 4 A b o AL 2D 9 Ton Yo e e B
wr S wre oG aod &3 RS A $4 $ad pad pad &Y T e A 9 9 Do Pom G v B AR
VAR ad RO Y™ AQd $RA $RE HD GG GG HRE HRE, $RE, il SIS SE W ISV C M T Ao e
AR WTU A AL, Qo 08, $RE, D AL Gah pad pad ey CRE NN 2 T S o S A e S
G (S AT Qo 0L, AL, $AL, KO $RE GG AL BRL QT b TSl S SR A SR S S S e e e
LD R 004 $0d KA 408 $0d, 4§04 HAd KT Bry GOu ek BN DOL PN PPN WAL by gn gPu wou oy
~§ Om fow $Ad $00 0L §R0 $A, 0l $RE WY R @ G s T I S LNON S
On G- 60 GO0, $04, A8, $A8, $Ad Al g On QO D e T C o T T
P HAa GRS $A8 $A8 $Ad 0l R WX S R D [B N T S I ST LV
POt d? GAL AL Rl g @y R @~ v Q2 B g e PO PN PO 9 B O g po A b
P Lot ot $AL QY QY Y e 4R e R R & RS S S T T N O R el VR
Pt B BT R W ke o o v R R @ € S Y R A . - Tl - ECpv VSVEY VEVIY-VR. -
WPk R R ook T8 we e D Oy b A9 A Y T B eeb fee rxoeab 0w g Do b

Figure 4: Latent Space visualization. We start from the center molecule and decode the neighborhood
latent vectors (neighborhood in projected 2D space).

References

David Alvarez-Melis and Tommi S Jaakkola. Tree-structured decoding with doubly-recurrent neural networks.
2016.

Mostapha Benhenda. Chemgan challenge for drug discovery: can ai reproduce natural chemical diversity? arXiv
preprint arXiv:1708.08227, 2017.

Esben Jannik Bjerrum. Smiles enumeration as data augmentation for neural network modeling of molecules.
arXiv preprint arXiv:1703.07076, 2017.

Joan Bresnan, Ronald M Kaplan, Stanley Peters, and Annie Zaenen. Cross-serial dependencies in dutch. 1982.

Hanjun Dai, Bo Dai, and Le Song. Discriminative embeddings of latent variable models for structured data. In
ICML, 2016.

Hanjun Dai, Bo Dai, Yan-Ming Zhang, Shuang Li, and Le Song. Recurrent hidden semi-markov model. 2017.

Li Dong and Mirella Lapata. Language to logical form with neural attention. arXiv preprint arXiv:1601.01280,
2016.

David K Duvenaud, Dougal Maclaurin, Jorge Iparraguirre, Rafael Bombarell, Timothy Hirzel, Alan Aspuru-
Guzik, and Ryan P Adams. Convolutional networks on graphs for learning molecular fingerprints. In
Advances in Neural Information Processing Systems, pages 2215-2223, 2015.

Peter Ertl and Ansgar Schuffenhauer. Estimation of synthetic accessibility score of drug-like molecules based on
molecular complexity and fragment contributions. Journal of cheminformatics, 1(1):8, 2009.

Rafael Gémez-Bombarelli, David Duvenaud, José Miguel Herndndez-Lobato, Jorge Aguilera-Iparraguirre,
Timothy D Hirzel, Ryan P Adams, and Aldn Aspuru-Guzik. Automatic chemical design using a data-driven
continuous representation of molecules. arXiv preprint arXiv:1610.02415, 2016.

Gabriel Lima Guimaraes, Benjamin Sanchez-Lengeling, Pedro Luis Cunha Farias, and Alan Aspuru-Guzik.
Objective-reinforced generative adversarial networks (organ) for sequence generation models. arXiv preprint
arXiv:1705.10843, 2017.

Zhiting Hu, Xuezhe Ma, Zhengzhong Liu, Eduard Hovy, and Eric Xing. Harnessing deep neural networks with
logic rules. arXiv preprint arXiv:1603.06318, 2016.

David Janz, Jos van der Westhuizen, and José Miguel Herndndez-Lobato. Actively learning what makes a
discrete sequence valid. arXiv preprint arXiv:1708.04465, 2017.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114,2013.
Donald E Knuth. Semantics of context-free languages. Theory of Computing Systems, 2(2):127-145, 1968.

Matt J Kusner, Brooks Paige, and José Miguel Hernandez-Lobato. Grammar variational autoencoder. arXiv
preprint arXiv:1703.01925, 2017.

Tao Lei, Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Deriving neural architectures from sequence and
graph kernels. arXiv preprint arXiv:1705.09037, 2017.

Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals, Alex Graves, Nal Kalch-
brenner, Andrew Senior, and Koray Kavukcuoglu. Wavenet: A generative model for raw audio. arXiv preprint
arXiv:1609.03499, 2016.

Emilio Parisotto, Abdel-rahman Mohamed, Rishabh Singh, Lihong Li, Dengyong Zhou, and Pushmeet Kohli.
Neuro-symbolic program synthesis. arXiv preprint arXiv:1611.01855, 2016.

Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with deep convolutional
generative adversarial networks. arXiv preprint arXiv:1511.06434, 2015.

Danilo J Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation and approximate inference
in deep generative models. In Proceedings of the 31st International Conference on Machine Learning
(ICML-14), pages 1278-1286, 2014.

Stuart M Shieber. Evidence against the context-freeness of natural language. 1985.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neural networks. In Advances
in neural information processing systems, pages 3104-3112, 2014.

David Weininger. Smiles, a chemical language and information system. 1. introduction to methodology and
encoding rules. Journal of chemical information and computer sciences, 28(1):31-36, 1988.

Xingxing Zhang, Liang Lu, and Mirella Lapata. Top-down tree long short-term memory networks. arXiv
preprint arXiv:1511.00060, 2015.

Appendix

A Grammar for Modecule

Our syntax grammar is based on OpenSMILES standard, a generative context free grammar starting

with (s).
s)
smiles)

atom)

(

(

(

(aliphatic organic)
(aromatic organic)
(bracket atom)

(

baracekt atom (isotope))
(baracekt atom (chiral))
(baracekt atom (h count))

baracekt atom (charge))
symbol)

isotope)

digit)

chiral)

(
(
(
(
(
(
(
(bond)

(ringbond)
(

branched atom)

ringbounds)
branches)

(
(
(branch)
(

chain)

-—4d = =1L L 4L L L 1

-+ 4L 4Ll Ll

-+ L 1L

(atom)

(chain)

(bracket atom) | {aliphatic organic) | {aromatic organic)
BICINIOISIPIFITIICLIBr
e l'n’ 170’18

‘[’ (baracekt atom (isotope)) ‘1’

(isotope) (symbol) (baracekt atom (chiral))
(symboly (baracekt atom (chiral))

(isotope) (symbol) | (symbol)

(chiral) (baracekt atom (h count))

(baracekt atom (h count))

(chiral)

(h count) {(baracekt atom (charge))
(baracekt atom (charge))

(h count)

(charge)

(aliphatic organic) | (aromatic organic)
(digit) | (digit) (digit) | (digit) (digit) (digit)
’17 | 72’ | ’37 | 74’ | ,57 | ?6, | ’7? | ?8’

‘@’ | ‘e@’

‘B | ‘0 (digir)

210 (digit) 1+ 1+ (digit)

3 7|‘_9|‘#7|‘/’|5\7

atom) | (atom) (branches) | (atom) (ringbounds)

(
éatom> (ringbounds) (branches)
(ringbounds) (ringbond) | (ringbond)
(branches) (branch) | (branch)

"C (chain) *y’ 1’ (bond) {chain))’

(branched atom) | {chain) (branched atom)
(chain) {(bond) {(branched atom)

10

	Introduction
	Background
	Variational Autoencoder
	Context Free Grammar and Attribute Grammar
	A motivational example

	Syntax-Directed Variational Autoencoder
	Stochastic Syntax-Directed Decoder
	Structure-Based Encoder
	Model Learning

	Related work
	Experiments
	Reconstruction Accuracy and Prior Validity
	Bayesian Optimization
	Predictive performance of latent representation
	Diversity of generated molecules
	Visualizing the Latent Space

	Grammar for Modecule

