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ABSTRACT
Recommender systems often use latent features to explain
the behaviors of users and capture the properties of items. As
users interact with different items over time, user and item
features can influence each other, evolve and co-evolve over
time. To accurately capture the fine grained nonlinear coevo-
lution of these features, we propose a recurrent coevolutionary
feature embedding process model, which combines recurrent
neural network (RNN) with a multidimensional point process
model. The RNN learns a nonlinear representation of user
and item features which take into account mutual influence
between user and item features, and the feature evolution
over time. We also develop an efficient stochastic gradient
algorithm for learning the model parameters, which can read-
ily scale up to millions of events. Experiments on diverse
real-world datasets demonstrate significant improvements in
user behavior prediction compared to state-of-the-arts.

1. INTRODUCTION
E-commerce platforms and social service websites, such as

Reddit, Amazon, and Netflix, attracts thousands of users ev-
ery second. Effectively recommending the appropriate service
items to users is a fundamentally important task for these
online services. It can significantly boost the user activities
on these sites and leads to increased product purchases and
advertisement clicks.

“You are what you eat and you think what you read.” The
interactions between users and items play a critical role in
driving the evolution of user interests and item features. For
example, for music streaming services, a long-time fan of
Rock music listens to an interesting Blues one day, and starts
to listen to more Blues in stead of Rock music. Similarly, a
single music may also serve different audiences at different
times. For example, a music initially targeted for an older
generation may become popular among the young, and the
features of this music need to be updated.
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Further more, as users interact with different items, users’
interests and items’ features can also co-evolve over time, i.e.,
their features are intertwined and can influence each other:

• user → item. For instance, in online discussion forums,
such as Reddit, although a group (item) is initially
created for statistics topics, users with very different
interest profiles can join this group. Therefore, the
participants can shape the features of the group through
their postings and responses. It is likely that this group
can eventually become one about deep learning simply
because most users here concern about deep learning.
• item → user. As the group is evolving towards topics on

deep learning, some users may become more interested
in deep learning topics, and they may participate in
other specialized groups on deep learning. On the
opposite side, some users may gradually gain interests
in pure math groups, lose interests in statistics and
become inactive in this group.

Such co-evolutionary nature of user-item interactions raises
very important questions on how to model them and how to
learn them from observed data. Further more, nowadays large
amount of user-item interaction data are becoming increas-
ingly available online. In addition to the precise time-stamps
of the interactions, many datasets also contain additional
context such as text, image, and video. There is urgent need
to design new models, and learning and inference algorithms
to leverage the huge potential of such data.

However, existing methods either treat the temporal user-
item interactions data as a static graph or use epoch based
methods such as tensor factorization to learn the latent fea-
tures [?]. These methods are not able to capture the fine
grained temporal dynamics of user-item interactions. Re-
cent point process based models treat time as a random
variable and improves over the traditional methods signifi-
cantly [1]. However, point process based methods typically
make strong assumptions about the function form of the
generative processes, which may not reflect the reality or
may not be accurate enough to capture the complex and
nonlinear user-item influence in real world. Moreover, it is
not easy to incorporate the observed context features in such
point process model.

How can we obtain a more expressive model to capture the
co-evolution features of user-item interactions, and learn such
a model from large volume of data? To tackle this challenge,
in this paper, we combine recurrent neural network (RNN)
with multivariate point process models [2], and propose a re-
current coevolutionary feature embedding process framework.
In particular, our work makes the following contributions:
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• We propose a novel model that captures the nonlinear
co-evolution nature of users’ and items’ latent features.
Our model assigns an evolving feature embedding pro-
cess for each user and item, and the co-evolution of
these latent feature processes is considered using two
parallel components: (i) item → user component, a
user’s latent feature is determined by the nonlinear
embedding of latent features of the items he interacted
with; and (ii) user → item component, conversely, an
item’s latent features are also determined by the latent
features of the users who interact with the item.

• We use recurrent neural network to parametrize the
nonlinear embedding and it can also take into account
the presence of potentially high dimensional observed
context features.

• We evaluate our method over multiple datasets, veri-
fying that our method can lead to significant improve-
ments in user behavior prediction compared to previous
state-of-the-arts. Precise time prediction is especially
novel and not possible by most prior work.

2. RELATED WORK
Recent work predominantly fix the latent features assigned

to each user and item [3, 4, 5, 6, 7, 8, 9, 10]. In more
sophisticated methods, the time is divided into epochs, and
static latent feature models are applied to each epoch to
capture some temporal aspects of the data [11, 12, 13, 12, 13,
14, 15, 16, 17, 18, 19, 20]. For such methods, it is not clear
how to choose the epoch length parameter. First, different
users may have very different timescale when they interact
with those service items, making it difficult to choose a
unified epoch length. Second, it is not easy for these methods
to answer time-sensitive queries such as when a user will
return to the service item. The predictions are only in the
resolution of the chosen epoch length. Recently, [1] proposed
a low-rank point process based model for time- sensitive
recommendations from recurrent user activities. However, it
fails to capture the heterogeneous coevolutionary properties
of user-item interactions.

In the deep learning community, [21] proposed collabora-
tive deep learning, a hierarchical Bayesian model that jointly
performs learning for the content features and collabora-
tive filtering for the ratings matrix. This method considers
interaction data as static graph and also does not capture la-
tent coevolutionary properties of user-item interactions. [22]
applied recurrent neural network based approach to rec-
ommender systems. Specifically, they adopt item-to-item
recommendation approach but use session based data with
temporal ordering to capture influences of past interactions
in particular session. However, it does not consider evolving
and co-evolving features of users and items interacting with
each other, partly because it is designed for the scenario
where user information is not available. Finally, our work
is inspired from newly proposed recurrent marked temporal
point process framework [23] that builds a connection be-
tween RNN and Point Processes. However, [23] focuses on
the task of next event prediction given a sequence of past
events for an entity and is only designed for one-dimension
point process. Significant generations and extensions are
needed for the recommendation system setting with feature
coevolution.

3. BACKGROUND ON TEMPORAL POINT
PROCESSES

A temporal point process [24, 25] is a random process
whose realization consists of a list of discrete events localized
in time, {ti} with ti ∈ R+ and i ∈ Z+. Equivalently, a given
temporal point process can be represented as a counting
process, N(t), which records the number of events before
time t. An important way to characterize temporal point
processes is via the conditional intensity function λ(t), a
stochastic model for the time of the next event given all
the previous events. Formally, λ(t)dt is the conditional
probability of observing an event in a small window [t, t+ dt)
given the history H(t) up to t and that the event has not
happen before t, i.e.,

λ(t)dt := P {event in [t, t+ dt)|H(t)} = E[dN(t)|H(t)]

, where one typically assumes that only one event can happen
in a small window of size dt, i.e., dN(t) ∈ {0, 1}.

Then, given a time t > 0, we can also characterize the
conditional probability that no event happens during [0, t)
as [26]:

S(t) = exp(−
∫ t

0

λ(τ) dτ)

and the conditional density that an event occurs at time t is
defined as

f(t) = λ(t)S(t) (1)

The function form of the intensity λ(t) is often designed to
capture the phenomena of interests. Commonly used form
includes:

• Hawkes processes [27, 28], whose intensity models the
excitation between events, i.e., λ(t) = µ+α

∑
ti∈H(t) κω(t−

ti), where κω(t) := exp(−ωt)I[t > 0] is an exponential
triggering kernel, µ > 0 is a baseline intensity inde-
pendent of the history. Here, the occurrence of each
historical event increases the intensity by a certain
amount determined by the kernel κω and the weight
α > 0, making the intensity history dependent and a
stochastic process by itself.

• Rayleigh process, whose intensity function is

λ(t) = αt (2)

where α > 0 is the weight parameter.

4. RECURRENT COEVOLUTIONARY FEA-
TURE EMBEDDING PROCESSES

In this section, we present the generative framework for
modeling the temporal dynamics of user-item interactions.
We first explicitly capture the co-evolving nature of users’
and items’ latent feature. Then, based on the compatibil-
ity between the users’ and items’ latent feature, we model
the user-item interactions by a temporal point process and
parametrize the intensity function by the compatibility.

4.1 Event representation
Given m users and n items, we denote the ordered list

of N observed events as O = {ej = (uj , ij , tj , qj)}Nj=1 on
time window [0, T ], where t1 6 . . . 6 N . Each event is
modeled as the tuple (uj , ij , tj , qj), where uj ∈ {1, . . . ,m},



(a) Co-evolving feature embedding processes.
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Figure 1: Model illustration for user u (blue) and item i (yellow). (a) User features and item features influence each other
and co-evolve over time. At time tul , the latent feature Ii(t

u
l ) of item i (in yellow) is influenced by the users’ feature (Uu(tul ),

Uv(tvk)), and the cumulative past interaction features (qu,ij , qu,ij+1) that captured by RNN. Conversely, Uu(tul ) is influenced by

the item features (Ii(t
u
1 ),Ij(t

w
k )), and by past interaction feature qu,ij . (b) The temporal interacting process where the tendency

that a user will interact with an item depends on the compatibility of their latent features. u is more likely to interact with i
than j.

ij ∈ {1, . . . , n}, tj ∈ R+, which means that the interaction
between user uj , item ij at time tj , with the interaction
context qj ∈ Rd. Here qj can be a high dimension vector
such as the text review, or simply the embedding of static
user/item features such as user’s profile and item’s categorical
features. For notation simplicity, we define

• Ou = {euj = (iuj , t
u
j , q

u
j )}|O

u|
j=1 as the ordered listed of all

events related to user u.
• Similarly we have Oi = {eij = (uij , t

i
j , q

i
j)}
|Oi|
j=1 as the

ordered list of all events related to item i.
We also set ti0 = tu0 = 0 for all the users and items. We will
also use tk− to denote the time point just before time tk.

4.2 Recurrent feature embedding processes
We associate latent features Uu(t) ∈ Rk with each user u

and Ii(t) ∈ Rk with each item i. These features represent
the subtle properties which cannot be directly observed, such
as the interests of a user and the semantic topics of an item.
Specifically, we model the drift, evolution, and co-evolution
of Uu(t) and Ii(t) as follows a piecewise constant function
of time and has jumps only at event times. Specifically, we
have define:
• User embedding process. For each user u, the

corresponding embedding after user u’s k-th event
euk = (iuk , t

u
k , q

u
k ) can be formulated as:

Uu(tuk) = σ

(
W1(tuk − tuk−1)︸ ︷︷ ︸

temporal drift

+W2Uu(tuk−1)︸ ︷︷ ︸
self evolution

(3)

+ W3Iik (tuk−)︸ ︷︷ ︸
co-evolution: item feature

+ W4q
u,ik
k︸ ︷︷ ︸

interaction feature

)
• Item embedding process. For each item i, we spec-

ify Ii(t) at time tik as:

Ii(t
i
k) = σ

(
V1(tik − tik−1)︸ ︷︷ ︸
temporal drift

+V2Ii(t
i
k−1)︸ ︷︷ ︸

self evolution

(4)

+ V3Uuk (tik−)︸ ︷︷ ︸
co-evolution: item feature

+ V4q
i,uk
k︸ ︷︷ ︸

interaction feature

)

where t− means the time point just before time t, W4,V4 ∈
Rk×d are the embedding matrices mapping from the ex-
plicit high-dimensional feature space into the low-rank latent
feature space and Wi,Vi ∈ RK×K , i = 1, 2, 3 are weights
parameters.
σ(·) is the nonlinear activation function, such as commonly

used ReLU, Tanh, or Sigmoid. For simplicity, we use basic
recurrent neural network to formulate the recurrence, but it
is also straightforward to extend it using GRU or LSTM to
gain more expressive power. Figure 1 summarizes the basic
setting of our model.

Here both the user and item’s feature embedding processes
are piecewise constant functions of time and only updated
if an interaction event happens. A user’s attribute changes
only when he had a new interaction with some item. For
example, a user’s taste for music would change only when he
listened to some new or old musics. Also, an item’s attribute
would change only when some user interacts with it. Hence,
the key idea is we only need to model the points when the
embedding needs to evolve. Next we discuss the rationale of
each term in detail:

• Temporal drift. The first term is defined based on the
time difference between consecutive events of specific
user or item. It allows the basic features of users (e.g.,
a user’s self-crafted interests) and items (e.g., textual
categories and descriptions) to smoothly drift through
time. Such changes of basic features normally are
caused by external influences.

• Self evolution. The current user feature should also
be influenced by its feature at the earlier time. This
captures the intrinsic evolution of user/item features.
For example, a user’s current taste should be more or
less similar to his/her tastes two days ago.

• Evolution with interaction features. Users’ and
items’ features can evolve and be influenced by the
characteristics of their interactions. For instance, the
genre changes of movies indicate the changing tastes
of users. The theme of a chatting-group can be easily



shifted to certain topics of the involved discussions. In
consequence, this term captures the influence of the
current interaction features to the changes of the latent
user (item) features.

• User-item coevolution. Users’ and items’ latent
features can mutually influence each other. This term
captures the two parallel processes. First, a user’s
latent feature is determined by the latent features of
the items he interacted with. At each time tk, the
latent item feature is Iik (tuk). In our model, we capture
both the temporal influence and feature of each history
item as a latent process. Conversely, an item’s latent
features are determined by the latent features of the
user who just interacts with the item.

• Interaction feature. The interaction feature is the
additional information/data happened in the user-item
interactions. For example, in online discussion forums
such as Reddit, the interaction feature is the posts and
comments made by the user. In the online review sites
such as Yelp, it is the reviews of the businesses.

To summarize, each feature embedding process evolves ac-
cording to the respective base temporal user (item) features
and also are mutually dependent on each other due to the
endogenous influences from the interaction features and the
entangled latent features.

4.3 User-item interactions as temporal point
processes

For each user, we model the recurrent occurrences of user
u’s interaction with all items as a multi-dimensional temporal
point process, with each item as one dimension. In particular,
the intensity in the i-th dimension (item i) is modeled as a
Rayleigh process:

λu,i(t− t0) = exp
(
Uu(t−)>Ii(t−)

)
︸ ︷︷ ︸
user-item compatibility

∗ (t− t0)︸ ︷︷ ︸
time lapse

(5)

where t > t0, and t− means the time point just before time
t. The rationale behind this formulation is three fold:
• Time as a random variable. Instead of discretizing

the time into epochs as in traditional mehtods [16,
17, 18, 19, 20], we explicitly model the timing of each
interaction event as a random variable, which naturally
captures the heterogeneity of the temporal interactions
between users and items.
• Short term preference. The probability for user u to

interact with item i at time t depends on the com-
patibility of their instantaneous latent features. Such
compatibility is evaluated through the inner product
of their latent features at the last time t0. It serves as
α in (2).
• Rayleigh time distribution. The user and item feature

embeddings are piecewise constant, and we use this
Rayleigh term to make the intensity function to be
piecewise linear. This formulation assumes a Rayleigh
distribution for the time intervals between consecu-
tive events in each dimension [29]. It is well-adapted
to modeling fads, where the infection likelihood f in
(1) rises to a peak and then drops extremely rapidly.
Furthermore, it is computationally easy to compute
integration and get analytic form of f . One can then

use f to make item recommendation by finding the
dimension that reaches the peak.

Because Uu(t) and Ii(t) co-evolve through time, their inner-
product measures a general representation of the cumulative
influence from the past interactions to the occurrence of the
current event. When the product is positive, it indicates a
self-exciting behavior that most recent activities will trigger
more events in the near future. For instance, one may re-
peatedly listen to a newly bought album within a short-time
window. When the product becomes negative, it represents
a self-correcting behavior that most recent interactions will
decrease the chance of more future events. For example, after
one keeps listening to the same album for a long time, he
may become bored and thus changes interests to other items.

Given a collection of events recorded within a time window
[0, T ), we can further estimate the parameters using maxi-
mum likelihood estimation of all events. The joint negative
log-likelihood is [30]:

` = −
N∑
j=1

log
(
λuj ,ij (tj)

)
−

m∑
u=1

n∑
i=1

∫ T

0

λu,i(τ) dτ (6)

where each event from O will have one term in the the first
summation, and the each pair of potential item-user inter-
action will have one term in the second double summation.
One advantage of point process formulation is that the non-
presence of an interaction at particular point in time is nicely
taken into account in survival terms in the second double
summation.

5. PARAMETER LEARNING
Having presented the model, in this section, we propose

an efficient algortihm to learn the parameters. Though we
presented batch objective function in Equation 6, we seek to
use stochastic methods to learn the embedding parameters
{Vi}4i=1 and {Wi}4i=1. The Adam Optimizer [31] is used
in our experiment, since it has shown good performance
in training RNNs., and use gradient clip to avoid gradient
explosion.

The Back Propagation Through Time (BPTT) is the stan-
dard way to train a RNN. To make the back propagation
tractable, one typically needs to do truncation during train-
ing. Different from traditional sequential data where one can
easily break the sequences into multiple segments to make
the BPTT trackable, here all the events are related to each
other by the user-item bipartite graph, which makes it hard
to decompose.

To do this, we first order all the events globally and then
do mini-batch training in a sliding window fashion. Each
time when conducting feed forward and back propagation,
we take the consecutive events within current sliding window
to build the computational graph. In our case the truncation
is on the global timeline, instead over individual independent
sequencs. Another benefit of ordering events globally is that
it allows us to keep the user and item latent features that
could be used for the future mini-batch training. Figure 2
illustrates our training method.

Since the user-item interactions vary a lot across mini-
batches, the corresponding computational graph also changes
greatly. To make the learning efficient, we use the graph
embedding framework [32] which allows training deep learn-
ing models where each term in the objective has a different
computational graphs but with shared parameters.



Next, we discuss in details on gradient computation. First,
note that the intensity function λu,i(t) is piecewise linear,
hence the integration in (6) can also be computed in a piece-
wise fashion with closed form, where the number of pieces
equals to the total number of events happened to user u and
item i separately.

Computing gradient For illustration purpose, we here
use Sigmoid as the nonlinear activation function σ. In or-
der to get gradient with respect to parameter W s, we first
compute gradients with respect to each varying points of
embeddings. For user u’s embedding after his k-th event, the
corresponding partial derivatives are computed by:

∂`

∂Uu(tuk)
= −Iiu

k︸ ︷︷ ︸
from intensity

+

n∑
i=1

∂
∫ tuk+1

tu
k

λu,i(τ)dτ

∂Uu(tuk)︸ ︷︷ ︸
from survival

+ (7)

∂`

∂Uu(tuk+1)
� (1− Uu(tuk+1))� Uu(tuk+1)W2︸ ︷︷ ︸

from user u’s next embedding

+
∂`

∂Iiu
k+1

(tuk+1)
� (1− Iiu

k+1
(tuk+1))� Iiu

k+1
(tuk+1)︸ ︷︷ ︸

from user u’s next item embedding

where � denotes element-wise multiplication.
The gradient coming from the second term (i.e., the sur-

vival term) is also easy to compute, since the Rayleigh dis-
tribution has closed form of survival function. For a certain
item i, if its feature doesn’t changed between time interval
[tuk , t

u
k+1], then we have

∂
∫ tuk+1

tu
k

λu,i(τ)dτ

∂Uu(tuk)
=

(tuk+1 − tuk)2

2
exp

(
Uu(tuk)>Ii(t

u
k)Ii(t

u
k)
)

(8)
On the other hand, if the embedding of item i changes during
this time interval, then we should break this interval into
segments and compute the summation of gradients in each
segment in a way similar to (8). Thus, we are able to compute
the gradients with respect to Wi, i ∈ {1, 2, 3, 4} as follows.

∂`

∂W1
=

m∑
u=1

∑
k

∂`

∂Uu(tuk)
� (1− Uu(tuk))� Uu(tuk)(tuk − tuk−1)

∂`

∂W2
=

m∑
u=1

∑
k

(
∂`

∂Uu(tuk)
� (1− Uu(tuk))� Uu(tuk)

)
Uu(tuk−1)>

∂`

∂W3
=

m∑
u=1

∑
k

(
∂`

∂Uu(tuk)
� (1− Uu(tuk))� Uu(tuk)

)
Iik (tuk−)>

∂`

∂W4
=

m∑
u=1

∑
k

(
∂`

∂Uu(tuk)
� (1− Uu(tuk))� Uu(tuk)

)
q
u,ik
k

Since the items are treated symmetrically as users, the cor-
responding derivatives can be obtained in a similar way.

6. EXPERIMENTS
We evaluate our model on real-world datasets. For each

sequence of user activities, we use all the events up to time
T · p as the training data, and the rest events as the testing
data, where T is the observation window. We report the
results on two tasks:
• Item prediction. At each test time, we predict the

item that the user will interact with. We rank all the

Jacob

1:45pm

Sophie

Jacob

Sophie

3:45pm 5:00pm 9:00pm 10:30pm

3:30pm

3:15pm

2:30pm 4:25pm

9:25pm

9:45pm

10:00pm8:15pm

Mini-batch 1 Mini-batch 2

(user, forum)

Figure 2: Illustration of BPTT with budget. Here shows
the process for two users and two forums. The dependency
within each dimension is represented by orange arrow, while
the across dimension dependency for the first three events is
noted by green dash line. The hidden states computed by
mini-batch 1 are inherited by next mini-batch.

items in the descending order of the conditional density
fu,i(t) = λu,i(t)Su,i(t) to produce a recommendation
list. We report the Mean Average Rank (MAR). The
smaller the value, the better performance.
• Time prediction. We predict the time when a testing

event will occur between a given user-item pair. We
predict the expectation of next event time on current
pair. Using Rayleigh distribution, this number is given
by Eu,i(t|t0) =

√
π

2 exp(Uu(t−)>Ii(t−))
. We report the

Mean Absolute Error (MAE) between the predicted
and true time.

6.1 Competitors
We compared our method to the following algorithms:
• PoissonTensor [14]: Poisson Tensor Factorization has

been shown to perform better than factorization meth-
ods based on squared loss [12, 13, 33] on recommenda-
tion tasks. The performance for this baseline is reported
using the average of the parameters fitted over all time
intervals.
• LowRankHawkes [1]: This is a low rank point pro-

cess based model which assumes user-item interactions
to be independent of each other and does not capture
the co-evolution of user and item features.
• STIC [34]: it fits a semi-hidden markov model to each

observed user-item pair and is only designed for time
prediction.
• TimeSVD++ [11] and FIP [8]: These two methods

are only designed for explicit ratings, the implicit user
feedbacks (in the form of a series of interaction events)
are converted into the explicit ratings by the respective
frequency of interactions with users.

6.2 Datasets
We use three real world datasets.
IPTV. It contains 7,100 users’ watching history of 385 TV

programs in 11 months (Jan 1 - Nov 30 2012), with around
2M events, and 1,420 movie features (including 1,073 actors,
312 directors, 22 278 genres, 8 countries and 5 years).

Yelp. This data was available in Yelp Dataset challenge
Round 7. It contains reviews for various businesses from
October, 2004 to December, 2015. Out of available 552K
users, we used users with more than 100 posts for our exper-
iments. We cleaned the review text by removing stop words
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Figure 3: Prediction results on three real world datasets.

and punctuation marks and only included words of length >
3 and frequency > 10. After this pre-processing, the dataset
comprised of 1,503 users, 47,924 groups (businesses) and
34,508 text features with a total of 2,92,000 reviews. To be
able to compare with baselines, we further decreased the size
of this processed dataset and used a total of 95,000 reviews
between randomly selected 95 users and 17,205 businesses.

Reddit. We collected discussion related data on different
subreddits (groups) for the month of January 2014. We
filtered all bot users’ and their posts from this dataset. Sim-
ilar to Yelp dataset, we cleaned the text of posts to remove
stop words and punctuation marks and only include words
of length > 3 and frequency > 10. Furthermore, we only
considered top 10,000 users sorted according to the frequency
of posts and randomly selected 1,000 users out of it to create
smaller dataset. After all pre-processing, the dataset consists
of 1,000 users, 1,403 groups and 82,389 text features. This
dataset contains a total of 10,000 discussion events.

6.3 Results
Item Recommendation From Figure 3 we can see, our

method significantly outperforms epoch-based baselines in
terms of item prediction on all the datasets. While the best
possible MAR one can achieve is 1, both our method and
LowRankHawkes got quite accurate results. Regarding
the MAR metric, the performance is also slightly better
compared with LowRankHawkes. Since one only need the
rank of conditional density f to conduct item prediction,
LowRankHawkes may still be good at differentiating f ,
but could not learn the actual value of f accurately, as shown
in the time prediction task where the value of f is needed
for precise prediction.

Time Prediction On time prediction, R-coevolve signifi-
cantly outperforms other methods. For example, compared
with LowRankHawkes, it has 2× time improvement on
Yelp, 6× improvement on Reddit, and 30× improvement on
IPTV. The time unit is hour. Hence it has 2 weeks accu-
racy improvement on IPTV and 2 days on Reddit. This is
important for online merchants to make time sensitive rec-
ommendations. An intuitive explanation is that our method

accurately captures the nonlinear pattern between user and
item interactions. The competitor LowRankHawkes as-
sumes specific parametric forms of the user-item interaction
process, hence may not be accurate or expressive enough
to capture real world temporal patterns. Furthermore, the
LowRankHawkes modeled each user-item interaction di-
mension independently, which may lose the important affec-
tion from user’s interaction with other items while predicting
the current item’s reoccurance time.

7. CONCLUSION
We have proposed an efficient framework for modeling

the co-evolution nature of users’ and items’ latent features.
It is a generative model designed for modeling and under-
standing user’s online behaviors, which is different from prior
work that only focuses on the prediction task in the rec-
ommender system. Moreover, the user and item’s evolving
and co-evolving processes are captured by the RNN. We
demonstrate the superior performance of our method on the
time prediction task, which is not possible by most prior
work. Future work includes extending to other applications
such as modeling dynamics of social message groups, and
understanding peoples’ behaviors on Q&A sites.
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