
Published as a conference paper at ICLR 2017

RECURRENT HIDDEN SEMI-MARKOV MODEL

Hanjun Dai1, Bo Dai1, Yan-Ming Zhang2, Shuang Li1, Le Song1

1 Georgia Institute of Technology
{hanjundai, bodai, sli370}@gatech.edu, lsong@cc.gatech.edu
2 National Laboratory of Pattern Recognition, Chinese Academy of Sciences
ymzhang@nlpr.ia.ac.cn

ABSTRACT

Segmentation and labeling of high dimensional time series data has wide appli-
cations in behavior understanding and medical diagnosis. Due to the difficulty
of obtaining a large amount the label information, realizing this objective in an
unsupervised way is highly desirable. Hidden Semi-Markov Model (HSMM) is a
classical tool for this problem. However, existing HSMM and its variants typically
make strong generative assumptions on the observations within each segment, thus
their ability to capture the nonlinear and complex dynamics within each segment is
limited. To address this limitation, we propose to incorporate the Recurrent Neural
Network (RNN) as the generative process of each segment, resulting the Recurrent
HSMM (R-HSMM). To accelerate the inference while preserving accuracy, we
designed a structure encoding function to mimic the exact inference. By gener-
alizing the penalty method to distribution space, we are able to train the model
and the encoding function simultaneously. We also demonstrate that the R-HSMM
significantly outperforms the previous state-of-the-art on both the synthetic and
real-world datasets.

1 INTRODUCTION

Segmentation and labeling of time series data is an important problem in machine learning and
signal processing. Given a sequence of observations {x1, x2, . . . , xT }, we want to divide the T
observations into several segments and label each segment simultaneously, where each segment
consists of consecutive observations. The supervised sequence segmentation or labeling techniques
have been well studied in recent decades (Sutskever et al., 2014; Kong et al., 2015; Chen et al.,
2015). However, for complicated signals, like human activity sensor data, accurately annotating the
segmentation boundary or the activity type would be prohibitive. Therefore, it is urgent to develop
unsupervised algorithms that can jointly learn segmentation and labeling information directly from
the data without supervisions. Figure 1 provides an illustration which we are focus on.

The Hidden Semi-Markov Model (HSMM) (Murphy, 2002) is a powerful model for such task. It
eliminates the implicit geometric duration distribution assumptions in HMM (Yu, 2010), thus allows
the state to transit in a non-Markovian way. Most of the HSMM variants make strong parametric
assumptions on the observation model (Rabiner, 1989; Johnson & Willsky, 2013; Yu, 2010). This
makes the learning and inference simple, but ignores the nonlinear and long-range dependency within
a segment. Take the human activity signals as an example. The movements a person performs at a
certain time step would rely heavily on the previous movements, like the interleaving actions of left
hand and right hand in swimming, or more complicated dependency like shooting after jumping in
playing basketball. Some models have been proposed to tackle this problem (Ghahramani & Hinton,
2000; Fox et al., 2009; Linderman et al., 2016), but are limited in linear case.

Since people have justified RNN’s ability in modeling nonlinear and complicated dependen-
cies (Sutskever et al., 2014; Du et al., 2016), we introduce the recurrent neural emission model into
HSMM for capturing various dependencies within each segment to address such issue. However, the
flexibility of recurrent neural model comes with prices: it makes the exact Expectation-Maximization
(EM) algorithm computationally too expensive.

To speed up the learning and inference, we exploit the variational encoder (VAE) framework (Kingma
& Welling, 2013). Specifically, we propose to use bidirectional RNN (bi-RNN) encoder. Such

1

Published as a conference paper at ICLR 2017

C
R

F
-A

E
H

D
P

-H
S

M
M

H
S

M
M

su
bH

S
M

M
rH

S
M

M
-f

w
rH

S
M

M
-d

p
100 200 300 400 500 600 700 800 900 1000 1100 1200

-2

-1

0

1

2

gr
ou

nd
T

ru
th

S1 S2 S3

(a) Sine

C
R

F
-A

E
H

D
P

-H
S

M
M

H
S

M
M

su
bH

S
M

M
rH

S
M

M
-f

w
rH

S
M

M
-d

p

100 200 300 400 500 600 700 800 900 1000 1100 1200

-5

0

5

gr
ou

nd
T

ru
th

S1 S2 S3

(b) Gaussian Process
Figure 1: Synthetic experiment results. Different background colors represent the segmentations
with different labels. In the top row, the black curve shows the raw signal. (a) The Sine data set is
generated by a HSMM with 3 hidden states, where each one has a corresponding sine function; (b)
Similar to 1a, but the segments are generated from Gaussian processes with different kernel functions.
The first two rows are our algorithms which almost exact locate every segment.

architecture will mimic the forward-backward algorithm, and hence is expected to capture similar
information as in exact posterior calculation.

It should be emphasized that due to the discrete nature of the latent variables in our model, the
algorithm proposed in Kingma & Welling (2013) and its extension on time-series models (Gao et al.,
2016; Krishnan et al., 2015) are not directly applicable. There are plenty of work proposed based
on stochastic neuron (Tang & Salakhutdinov, 2013; Bengio et al., 2013; Mnih & Gregor, 2014;
Raiko et al., 2014; Gu et al., 2015; Chung et al., 2016) to remedy such issue. However, none of
these off-the-shelf methods are easy to achieve good performance according to our experiment: the
hundreds or thousands layers of stochastic neuron (which is equal to the length of sequence), together
with the switching generative RNN, make the encoding function very sensitive, and thus, extremely
difficult to train fully on unsupervised setting. We propose a solution, stochastic distributional penalty
method, which introduces auxiliary distributions to separate the decoding R-HSMM and encoding
bi-RNN in training procedure, and thus, reduces the learning difficulty for each component. This
novel algorithm is general enough and can be applied to other VAE with discrete latent variables,
which can be of independent interest. We emphasize that the proposed algorithm is maximizing
exact the nagative Helmholtz variational free energy. It is different from Johnson et al. (2016) in
which a lower bound of the variational free energy is proposed as the surrogate to be maximized for
convenience.

We experimentally justified our algorithm on the synthetic datasets and three real-world datasets,
namely the segmentation tasks for human activity, fruit fly behavior and heart sound records. The
R-HSMM with Viterbi exact inference significantly outperforms basic HSMM and its variants,
demonstrating the generative model is indeed flexible. Moreover, the trained bi-RNN encoder
also achieve similar state-of-the-art performances to the exact inference, but with 400 times faster
inference speed, showing the proposed structured encoding function is able to mimic the exact
inference efficiently.

2 MODEL ARCHITECTURE

Given a sequence x = [x1, x2, . . . , x|x|], where xt ∈ Rm is an m dimensional observation at time t,
our goal is to divide the sequence into meaningful segments. Thus, each observation xt will have
the corresponding label zt ∈ Z, where Z = {1, 2, . . . ,K} is a finite discrete label set and K is
predefined. The label sequence z = [z1, z2, . . . , z|x|] should have the same length of x.

Besides labels, HSMM will associate each position twith additional variable dt ∈ D = {1, 2, . . . , D},
where dt is known as duration variable andD is the maximum possible duration. The duration variable
can control the number of steps the current hidden state will remain. We use d to denote the duration
sequence. We also use notation xt1:t2 to denote the substring [xt1 , xt1+1, . . . , xt2] of x. Without
ambiguity, we use z as a segment label, and d as the duration.

2

Published as a conference paper at ICLR 2017

B

A
π

d1 d2 d3 d4 d5

z1 z2 z3 z4 z5

x1 x2 x3 x4 x5

θ

(a) Classical Hidden Semi-Markov Model.

B
d1 d2 d3 d4 d5

z1 z2 z3 z4 z5

A
π
θrnn

x1 x2 x3 x4 x5

h1 h2 h3 h4 h5

(b) Recurrent Hidden Semi-Markov Model.

Figure 2: Graphical models of HSMM and R-HSMM. Different from classical HSMM, the R-HSMM
has two-level emission structure with recurrent dependency.

In this paper, we focus on one of the variants of HSMM, namely the explicit duration HMM
(EDHMM) (Rabiner, 1989), and use Decreasing Count Variables (Chiappa, 2014) for the notation.

Explicit Duration Hidden Markov Model. Similar to HMM, this model treats the pair of (z, d) as
‘macro hidden state’. The probability of initial macro state is defined as P (z, d) = P (z)P (d|z). We
use the notation πz , P (z) and P (d|z) , Bz,d to parametrize the initial probability and duration
probability, respectively. Ai,j , P (zt = i|zt−1 = j, dt−1 = 1) is the state transition probability
on the segment boundary. Here π ∈ RK is in K-dimensional simplex. For each hidden state z, the
corresponding rows Bz,: and Az,: are also in probability simplex. Here we assume the multinomial
distribution for P (d|z).

In EDHMM, the transition probability of macro hidden state P (zt, dt|zt−1, dt−1) is decomposed by
P (zt|zt−1, dt−1)P (dt|zt, dt−1) and thus can be defined as:

P (zt|zt−1, dt−1) =

{
Azt−1,zt if dt−1 = 1

I(zt=zt−1) if dt−1 > 1
; P (dt|zt, dt−1) =

{
Bzt,dt if dt−1 = 1

I(dt=dt−1−1) if dt−1 > 1
.

(1)The graphical model is shown in Figure 2a.

Recurrent Hidden Semi-Markov Model. For the simplicity of explanation, we focus our algorithm
on the single sequence first. It is straightforward to apply the algorithm for dataset that has multiple
sequences. Given the parameters {π,A,B}, the log-likelihood of a single observation sequence x
can be written as below,

L(x) = log
∑
z,d

πz1Bz1,d1

|x|∏
t=2

P (zt|zt−1, dt−1)P (dt|zt, dt−1)P (x|z,d), (2)

where P (x|z,d) is the emission probability. To define P (x|z,d), we further denote the sequence
variable s = [s1, s2, . . . , s|s|] to be the switching position (or the beginning) of segments. Thus
s1 = 1, and si = si−1 + dsi−1

and |s| is the number of segments. Traditional HSMM assumes
P (x|z,d) =

∏|x|
t=1 P (xt|zt), which ignores the dependency and some degree of dynamics exhibited

in each segment. While in this paper, we use RNN as the generative model to capture the dependent
emission probability. Specifically, for the i-th segment starting from position si, the corresponding
generative process is

P (xsi:si+dsi−1|zsi , dsi) =

si+dsi−1∏
t=si

P (xt|xsi:t−1, zsi) =

si+dsi−1∏
t=si

P (xt|ht, zsi) (3)

where we assume that the dependency of history before time step j can be captured by a vector
hj ∈ Rh. As in RNN, we use a recurrent equation to formulate the history vector,

ht = σ(W (zsi)xt−1 + V (zsi)ht−1 + b(zsi)). (4)

Finally, in this model, P (x|z,d) =
∏|s|
i=1 P (xsi:si+dsi−1|zsi , dsi) is computed by the product of

generative probabilities for each segment. In Eq. 4, W ∈ Rm×h is a weight matrix capturing the last
observation xt−1, and V ∈ Rh×h is for the propagation of history ht−1. The b is a bias term. The
superscript zsi indexes the RNN we used for the corresponding segment. The segments with different
labels are generated using different RNNs. So we should maintain K RNNs. σ(·) is a nonlinear
activation function. We use tanh in our experiments.

3

Published as a conference paper at ICLR 2017

At the time step t, we assume a diagonal multivariate gaussian distribution over the conditional
likelihood, where the mean and covariance matrix are the output of RNN, i.e.,

P (xt|ht, zsi) ∼ N (xt;µ = U
(zsi)
µ ht + b

(zsi)
µ ,Σ = Diag(exp(U

(zsi)

Σ ht + b
(zsi)

Σ))) (5)

The matrices Uµ, UΣ ∈ Rm×h are used for parametrizing the mean and covariance at each time
step j, given the history information. bµ, bΣ ∈ Rm are bias terms. For simplicity, let’s use θrnn =

{θ(1)
rnn, θ

(2)
rnn, . . . , θ

(K)
rnn} to denote the collection of parameters in each RNN. On the boundary case,

i.e., the starting point of each segment, we simply set ht = 0, which can be viewed as the setting
according to the prior knowledge (bias terms) of RNN.

The above formulation indicates that the generative model P (xt|ht, zsi) depends not only on the
last step observation xt−1, but also the last hidden state ht−1, which is together captured in Eq. 4.
In summary, we denote all the parameters in the proposed R-HSMM as θ = {π,A,B, θrnn}. The
corresponding graphical model is shown in Figure 2b.

3 SEQUENTIAL VARIATIONAL AUTOENCODER

To obtain the posterior or MAP in the proposed R-HSMM, the classical forward-backward algorithm
or Viterbi algorithm needs to solve one dynamic programming per sample, which makes the inference
costly, especially for the long sequence with thousands of timestamps. So instead, we treat the
Bayesian inference from optimization perspective, and obtain the posterior by maximizing the
negative Helmholtz variational free energy (Williams, 1980; Zellner, 1988; Dai et al., 2016),

max
Q(z,d|x)∈P

LθQ(x) := EQ(z,d|x) [logPθ(x, z,d)− logQ(z,d|x)] , (6)

over the space of all valid densities P . To make the optimization (6) tractable, the variational
autoencoder restricts the feasible sets to be some parametrized density Qψ, which can be executed
efficiently comparing to the forward-backward algorithm or Viterbi algorithm. However, such
restriction will introduce extra approximation error. To reduce the approximation error, we use a
structured model, i.e., bidirectional RNN, to mimic the dynamic programming in forward-backward
algorithm. Specifically, in the forward-backward algorithm, the forward message αt(zt, dt) and
backward message βt(zt, dt) can be computed recursively, and marginal posterior at position t
depends on both αt(zt, dt) and βt(zt, dt). Similarly, in bi-RNN we embed the posterior message
with RNN’s latent vector, and marginal posterior is obtained from the latent vectors of two RNNs
at the same time step t. Let ψ = {ψ−−−→RNN1

, ψ←−−−RNN2
,Wz ∈ Rh×K ,Wd ∈ Rh×D} be the parameters of

bi-RNN encoder, the Qψ is decomposed as:

Qψ(z,d|x) = Q(z1|h1;ψ)Q(d1|z1, h1;ψ)

|x|∏
t=2

Q(zt|dt−1, ht;ψ)Q(dt|zt, dt−1, ht;ψ), (7)

where ht = [
−−−→
RNN1(x1:t),

←−−−
RNN2(xt:|x|)] is computed by bi-RNN. We use multinomial distributions

Q(zt|ht;ψ) =M(softmax(W>z ht)) and Q(dt|zt, ht;ψ) =M(softmax(W>d ht)). The dependency
over dt−1 ensures that the generated segmentation (z,d) is valid according to Eq. 1. For example, if
we sampled duration dt−1 > 1 from Qψ at time t− 1, then dt and zt should be deterministic. In our
experiment, we use LSTM (Hochreiter & Schmidhuber, 1997) as the recursive units in bi-RNN.

Since with any fixed θ, the negative Helmholtz variational free energy is indeed the lower bound of
the marginal likelihood, i.e.,

logPθ(x) ≥ L(θ, ψ;x) := EQψ(z,d|x)[logPθ(x, z,d)− logQψ(z,d|x)], (8)
therefore, we can treat it as a surrogate of the marginal log-likelihood and learn θ jointly with
approximate inference, i.e.,

max
θ,ψ

1

N

N∑
n=1

L(θ, ψ;x(n)) (9)

It should be emphasized that due to the discrete nature of latent variables in our model, the algorithm
proposed in Kingma & Welling (2013) is not directly applicable, and its extension with stochastic
neuron reparametrization (Bengio et al., 2013; Raiko et al., 2014; Gu et al., 2015; Chung et al., 2016)
cannot provide satisfied results for our model according to our experiments. Therefore, we extend the
penalty method to distribution space to solve optimization (9).

4

Published as a conference paper at ICLR 2017

Algorithm 1 Learning sequential VAE with stochastic distributional penalty method

1: Input: sequences {x(n)}Nn=1

2: Randomly initialize ψ(0) and θ0 = {π0, A0, B0, θ0
rnn}

3: for λ = 0, . . . ,∞ do
4: for t = 0 to T do
5: Sample {x(n)}Mn=1 uniformly from dataset with mini-batch size M .
6: Get {z(n),d(n)}Mn=1 with θt by dynamic programming in (13).
7: Update πt+1, At+1, Bt+1 using rule (16).
8: θt+1

rnn = θtrnn,−γt 1
M

∑M
n=1∇θtrnnL̃λ(θ, ψ|x(n))

9: ψt+1 = ψt − ηt 1
M

∑M
n=1∇ψtL̃λ(θ, ψ|x(n)) . bi-rnn sequence to sequence learning

10: end for
11: end for

4 LEARNING VIA STOCHASTIC DISTRIBUTIONAL PENALTY METHOD

As we discussed, learning the sequential VAE with stochastic neuron reparametrization in unsu-
pervised setting is extremely difficult, and none the off-the-shelf techniques can provide satisfied
results. In this section, we introduce auxiliary distribution into (9) and generalize the penalty
method Bertsekas (1999) to distribution space.

Specifically, we first introduce an auxiliary distribution Q̃(z,d|x) for each x and reformulate the
optimization (9) as

max
θ,ψ,{Q̃(z,d|x(n))}Nn=1

1

N

N∑
n=1

EQ̃(z,d|x(n))

[
logPθ(x

(n), z,d)− log Q̃(z,d|x(n))
]
, (10)

s.t. KL
(
Q̃(z,d|x(n))||Qψ(z,d|x(n))

)
= 0, ∀x(n), n = 1, . . . , N.

We enforce the introduced Q̃(z,d|x) equals to Qψ(z,d|x) in term of KL-divergence, so that the
optimization problems (9) and (10) are equivalent. Because of the non-negativity of KL-divergence,
itself can be viewed as the penalty function, we arrive the alternative formulation of (10) as

max
θ,ψ,{Q̃(z,d|x(n))}Nn=1

1

N

N∑
n=1

L̃λ(θ, ψ|x(n)), (11)

where

L̃λ(θ, ψ|x) = EQ̃(z,d|x)

[
logPθ(x, z,d)− log Q̃(z,d|xi)

]
− λKL

(
Q̃(z,d|x)||Qψ(z,d|x)

)
and λ ≥ 0. Obviously, as λ → ∞, KL(Q̃(z,d|x)||Qψ(z,d|x)) must be 0, otherwise the
L̃∞(θ, ψ|x) will be −∞ for arbitrary θ, ψ. Therefore, the optimization (11) will be equivalent
to problem (10). Following the penalty method, we can learn the model with λ increasing from 0 to
∞ gradually. The entire algorithm is described in Algorithm 1. Practically, we can set λ = {0,∞}
and do no need the gradually incremental, while still achieve satisfied performance. For each fixed λ,
we optimize Q̃ and the parameters θ, ψ alternatively. To handle the expectation in the optimization,
we will exploit the stochastic gradient descent. The update rules for θ, ψ and Q̃ derived below.

4.1 UPDATING Q̃

In fact, fix λ, Qψ and Pθ in optimization (11), the optimal solution Q̃∗(z,d|x) for each x has
closed-form.
Theorem 1 Given fixed λ, Qψ and Pθ, Q̃∗(z,d|x) ∝ Qψ(z,d|x)

λ
1+λPθ(x, z,d)

1
1+λ achieves the

optimum in (11).
Proof The proof is straightforward. Take the functional derivative of L̃ w.r.t. Q̃ and set it to zeros,

∇Q̃L̃ = logPθ(x, z,d) + λ logQ(z,d|x)− (1 + λ) log Q̃(z,d|x) = 0,

we obtain 1
1+λ logPθ(x, z,d) + λ

1+λ logQ(z,d|x) = log Q̃(z,d|x). Take exponential on both
sides, we achieve the conclusion.
In fact, because we are using the stochastic gradient for updating θ and ψ later, Q̃∗(z,d|x) is never
explicitly computed and only samples from it are required. Recall the fact that Qψ(z,d|x) has a nice
decomposition 7, we can multiply its factors into each recursion step and still get the same complexity

5

Published as a conference paper at ICLR 2017

as original Viterbi algorithm for MAP or sampling. Specifically, let’s define αt(j, r) to be the best
joint log probability of prefix x1:t and its corresponding segmentation which has the last segment
with label j and duration r, i.e.,

αt(j, r) , max
z1:t,d1:t

log Q̃(z1:t,d1:t|x1:t), s.t. zt = j, dt = dt−r = 1, dt−r+1 = r (12)

here t ∈ {1, 2, . . . , |x|}, j ∈ Z, r ∈ D. Then we can recursively compute the entries in α as below:

αt(j, r) =

αt−1(j, r − 1) + 1
1+λ log(

Bj,r
Bj,r−1

P (xt|xt−r+1:t−1, z = j)) r > 1, t > 1

+ λ
1+λ log

Qψ(dt−r+1=r|z=j,x)
Qψ(dt−r+1=r−1|z=j,x) ;

maxi∈Z\j maxr′∈D αt−1(i, r′) + 1
1+λ log(Ai,jBj,1P (xt|z = j)) r = 1, t > 1

+ λ
1+λ logQψ(zt−r+1 = j, dt−r+1 = r|x);

λ
1+λ logQψ(z1 = j, d1 = r|x) + 1

1+λ log(πjBj,1P (x1|z = j)); r = 1, t = 1

0. otherwise
(13)

To construct the MAP solution, we also need to keep a back-tracing array βt(j, r) that records the
transition path from αt−1(i, r′) to αt(j, r). The sampling from Q̃(z,d|x) also can be completed
with almost the same style forwards filtering backwards sampling algorithm, except replacing the
max-operator by sum-operator in α propagation Murphy (2012).

Without considering the complexity of computing emission probabilities, the dynamic programming
needs time complexity O

(
|x|K2 + |x|KD

)
(Yu & Kobayashi, 2003) and O(|x|K) memory. We

explain the details of optimizing the time and memory requirements in Appendix A.

Remark: When λ =∞, the Q̃(z,d|x) will be exactly Qψ(z,d|x) and the algorithm will reduce to
directly working on Qψ(z,d|x) without the effect from Pθ(x, z,d). Therefore, it is equivalent to
obtaining MAP or sampling of the latent variables z,d from Qψ(z,d|x), whose cost is O(|x|K).
In practical, to further accelerate the computation, we can follow such strategy to generate samples
when λ is already large enough, and thus, the effect of Pθ(x, z,d) is negligible.

4.2 UPDATING θ AND ψ

With the fixed Q̃(z,d|x), we can update the θ and ψ by exploiting stochastic gradient descent
algorithm to avoid scanning the whole training set. Sample a mini-batch of sequences {xn}Mn=1 with
size M � N , we proceed to update {θ, ψ} by optimizing the Monte Carlo approximation of (11),

max
θ,ψ

1

M

M∑
n=1

logPθ(x
(n), z(n),d(n)) + λ logQψ(z(n),d(n)|x(n)), (14)

where {z(n),d(n)} is the MAP or a sample of Q̃(z,d|x(n)). Note that the two parts related to θ and
ψ are separated now, we can optimize them easily.

Update θ: Finding parameters to maximize the likelihood needs to solve the constrained optimization
shown below

max
θ

1

M

M∑
n=1

(
log π

z
(n)
1

+

|s|∑
i=2

logA
z
(n)
si−1

,z
(n)
si

+

|s|∑
i=1

B
z
(n)
si

,d
(n)
si

+

si+d
(n)
si
−1∑

j=si

logP (x
(n)
j |h(n)

j , z(n)si ; θrnn)

)
(15)

where {π,A,B} are constrained to be valid probability distribution. We use stochastic gradient
descent to update θrnn in totally K RNNs. For parameters π,A,B which are restricted to simplex,
the stochastic gradient update will involve extra projection step. To avoid such operation which may
be costly, we propose the closed-form update rule derived by Lagrangian,

πi =

∑M
n=1 I(z

(n)
1 = i)

m
, Ai,j =

∑M
n=1

∑|s(n)|−1
t=1 I(z(n)

st = i and z(n)
st+1 = j)∑M

n=1 |s(n)| −M
(16)

Bj,r =

∑M
n=1

∑|s(n)|
t=1 I(d(n)

st = r and z(n)
st = j)∑M

n=1 |s(n)|
Since we already have the segmentation solution, the total number of samples used for training is
equal to the number of observations in dataset. The different RNNs use different parameters, and
train on different parts of observations. This makes it easy for parallelized training.

6

Published as a conference paper at ICLR 2017

Update ψ: Given fixed λ, logQψ(z(n),d(n)|x(n)) is essentially the sequence to sequence likelihood,
where the input sequence is x and output sequence is {z,d}. Using the form of Qψ in Eq 7, this
likelihood can be decomposed by positions. Thus we can conveniently train a bi-RNN which
maximize the condition likelihood of latent variables by stochastic gradient descent.

Remark: We can get multiple samples {z,d} for each x from Q̃(z,d|x) to reduce the variance in
stochastic gradient. In our algorithm, the samples of latent variable come naturally from the auxiliary
distributions (which are integrated with penalty method), rather than the derivation from lower bound
of objective (Tang & Salakhutdinov, 2013; Raiko et al., 2014; Mnih & Rezende, 2016).

5 EXPERIMENTS

Baselines We compare with classical HSMM and two popular HSMM variants. The first one
is Hierarchical Dirichlet-Process HSMM (HDP-HSMM) (Johnson & Willsky, 2013), which is the
nonparametric Bayesian extension to the traditional HSMM that allows infinite number of hidden
states; the second one is called subHSMM (Johnson & Willsky, 2014), which uses infinite HMM as
the emission model for each segment. This model also has two-level of latent structure. It considers
the dependency within each segment, which is a stronger algorithm than HDP-HSMM. We also
compare with the CRF autoencoder (CRF-AE) (Ammar et al., 2014), which uses markovian CRF as
recognition model and conditional i.i.d.model for reconstruction. Comparing to HSMM, this model
ignores the segmentation structures in modeling and is more similar to HMM.
Evaluation Metric We evaluate the performance of each method via the labeling accuracy. Specifi-
cally, we compare the labels of each single observations in each testing sequence. Since the labels are
unknown during training, we use KM algorithm (Munkres, 1957) to find the best mapping between
predicted labels and ground-truth labels.
Settings Without explicitly mentioned, we use leave-one-sequence-out protocol to evaluate the
methods. Each time we test on one held-out sequence, and train on other sequences. We report the
mean accuracy in Table 1. We set the truncation of max possible duration D to be 400 for all tasks.
We also set the number of hidden states K to be the same as ground truth.

For the HDP-HSMM and subHSMM, the observation distributions are initialized as standard Mul-
tivariate Gaussian distributions. The duration is modeled by the Poisson distribution. We tune the
concentration parameters α, γ ∈ {0.1, 1, 3, 6, 10}. The hyperparameters are learned automatically.
For subHSMM, we tune the truncation threshold of the second level infinite HMM from {2 . . . 15}.
For CRF-AE, we extend the origin model for the continuous observations, and learn all parameters
similar to M. Schmidt (2008). We use mixture of Gaussians to model the emission, where the number
of mixtures is tuned in {1, . . . , 10}.
For the proposed R-HSMM, we use Adam (Kingma & Ba, 2014) to train the K generative RNN
and bi-RNN encoder. To make the learning tractable for long sequences, we use back propagation
through time (BPTT) with limited budget. We also tune the dimension of hidden vector in RNN,
the L2-regularization weights and the stepsize. We implemented with CUDA that parallelized for
different RNNs, and conduct experiments on K-20 enabled cluster. We include both the R-HSMM
with the exact MAP via dynamic programming (rHSMM-dp) and sequential VAE with forward pass
(rHSMM-fw) in experiments. In all tasks, the rHSMM-fw achieves almost the same performance
to rHSMM-dp, but 400 times faster, showing the bi-RNN is able to mimic the forward-backward
algorithm very well with efficient computation.

5.1 SEGMENTATION ACCURACY

Synthetic Experiments We first evaluate the proposed method on two 1D synthetic sequential data
sets. The first data set is generated by a HSMM with 3 hidden states, where π,A,B are designed
beforehand. A segment with hidden state z is a sine function λz sin(ωzx+ ε1) + ε2, where ε1 and ε2
are Gaussian random noises. Different hidden states use different scale parameters λz and frequency
parameters ωz . The second data set also has 3 hidden states, where the segment with hidden state z is
sampled from a Gaussian process (GP) with kernel function kz(x, y). Different hidden states employ
different kernel functions. The specific kernel functions used here are k1(x, y) = exp{−min(| x−y |
, |x+ y|)2/10}, k2(x, y) = exp{−(x− y)2/10} and k3(x, y) = (5− |x− y|)I{(5− |x− y|) < 5}.
For both of the Sine and GP data sets, the duration of a segment is randomly sampled from a
distribution defined on {1, ..., 100}, which depends on the hidden states. Thus, the segmentation task
corresponds to finding out different functions embedded in the sequences.

7

Published as a conference paper at ICLR 2017

C
R

F
-A

E
H

D
P

-H
S

M
M

H
S

M
M

su
bH

S
M

M
rH

S
M

M
-f

w
rH

S
M

M
-d

p

200 400 600 800 1000 1200 1400 1600 1800 2000

-0.5

0

0.5

1

1.5

gr
ou

nd
T

ru
th

Walk Walk upstairs Walk downstairs Sitting Standing Laying

Stand to sit Sit to stand Sit to lie Lie to sit Stand to lie Lie to stand

(a) Human activity (b) Drosophila

Figure 3: Segmentation results on Human activity and Drosophila datasets. Different background
colors represent the segmentations with different labels. In the top row, the black cure shows the
signal sequence projected to the first principle component. The following two rows are our algorithms
which almost exact locate every segment. (a) The Human activity data set contains 12 hidden states,
each of which corresponds to a human action; (b) The Drosophila data set contains 11 hidden states,
each of which corresponds to a drosophila action.

Table 1: Error rate of segmentation. We report the mean and standard deviation of error rate.
Methods SINE GP HAPT Drosophila Heart PN-Full

rHSMM-dp 2.67 ± 1.13% 12.46 ± 2.79% 16.38 ± 5.03% 36.21 ± 1.37% 33.14 ± 7.87% 31.95 ± 4.32%
rHSMM-fw 4.02 ± 1.37% 13.13 ± 2.89% 17.74 ± 7.64% 35.79 ± 0.51% 33.36 ± 8.10% 32.34 ± 3.97%

HSMM 41.85 ± 2.38% 41.15 ± 1.99% 41.59 ± 8.58% 47.37 ± 0.27% 50.62 ± 4.20 % 45.04 ± 1.87%

subHSMM 18.14 ± 2.63% 24.81 ± 4.63% 22.18 ± 4.45% 39.70 ± 2.21% 46.67 ± 4.22% 43.01 ± 2.35%

HDP-HSMM 42.74 ± 2.73% 41.90 ± 1.58% 35.46 ± 6.19% 43.59 ± 1.58% 47.56 ± 4.31% 42.58 ± 1.54%

CRF-AE 44.87 ± 1.63% 51.43 ± 2.14% 49.26 ± 10.63% 57.62 ± 0.22% 53.16 ± 4.78% 45.73 ± 0.66%

We visualize the segmentation results of ground truth and three competitors on Sine and GP data
sets in Figure 1a and Figure 1b respectively, and report the numerical results in Table 1. As we
can see, R-HSMM provides much better results on even small segments, dramatically outperforms
HSMM variants and CRF-AE. Also note that, the sine function depicts short term dependencies, while
Gaussian process has long dependency that determined by the kernel bandwidth. This demonstrates
the ability of R-HSMM in capturing the long or short term dependencies.

Human activity This dataset which is collected by Reyes-Ortiz et al. (2016) consists of signals
collected from waist-mounted smartphone with accelerometers and gyroscopes. Each of the volun-
teers is asked to perform a protocol of activities composed of 12 activities (see Figure 3a for the
details). Since the signals within an activity type exhibit high correlation, it is natural for RNN to
model this dependency. We use these 61 sequences, where each sequence has length around 3000.
Each observation is a 6 dimensional vector, consists of triaxial measures from accelerometers and
gyroscopes.

Figure 3a shows the ground truth and the segmentation results of all methods. Both rHSMM-dp and
rHSMM-fw almost perfectly recover the true segmentation. They can also capture the transition
activity types, e.g., stand to lie or sit to lie. The HSMM, HDP-HSMM and CRF-AE makes some
fragmental but periodical segmentations for walking, caused by lacking the dependency modeling
within a segment. The subHSMM also has similar problem, possibly due to the limited ability of
HMM generative model.

Drosophila Here we study the behavior patterns of drosophilas. The data was collected by Kain
et al. (2013) with two dyes, two cameras and some optics to track each leg of a spontaneously
behaving fruit fly. The dimension of observation in each timestamp is 45, which consists of the raw
features and some higher order features. See Figure 3b for the detail of the 11 behavior types. We
perform leave-one-sequence-out experiment on 10 sequences of length 10000 each. Figure 3b shows
the segmentation results on the prefix of one sequence, while Table 1 gives the mean accuracy on all
sequences. Different from the previous experiment, where the human activity signals are relatively

8

Published as a conference paper at ICLR 2017

-4

-3

-2

-1

0

1

2

3

R
ec

on
st

ru
ct

ed

200 400 600 800 1000 1200 1400

-2

-1

0

1

2

O
rig

in

(a) Reconstruction illustration on Sine dataset.

-5

0

5

R
ec

on
st

ru
ct

ed

200 400 600 800 1000 1200 1400

-6

-4

-2

0

2

4

6

O
rig

in

(b) Reconstruction illustration on GP dataset.

Figure 4: Reconstruction illustration. The generative RNNs (decoders) are asked to reconstruct the
signals from only the discrete labels and durations (which are generated from encoder).

smooth, here the signals depict high variance. Different activities exhibit quite different duration
and patterns. Also, the activity types changes frequently. The R-HSMM almost captured each
changing point of activities with both long and short durations. The corresponding mean accuracy
also outperforms the baselines. However, we observed there are some correct segmentations with
wrong labels. This happens mostly to the short segments, in which the RNN doesn’t have enough
history established for distinguishing similar activity types.

Physionet The heart sound records, usually represented graphically by phonocardiogram (PCG),
are key resources for pathology classification of patients. We collect data from PhysioNet Challenge
2016 (Springer et al., 2015), where each observation has been labeled with one of the four states,
namely Diastole, S1, Systole and S2. We experiment with both the raw signals and the signals after
feature extraction. Regarding the raw signals (Heart dataset), we collect 7 1-dimensional sequences
of length around 40000. The feature-rich dataset (PN-Full) contains 2750 sequences, where each of
them consists of 1500 4-dimensional observations. We do 5-fold cross validation for PN-Full. The
visualization of segmentation results are shown in Appendix B.4. As the results shown in Table 1,
our algorithm still outperforms the baselines significantly. Also for such long raw signal sequences,
the speed advantage of bi-RNN encoder over Viterbi is more significant. Viterbi takes 8min to do one
inference, while bi-RNN only takes several seconds. Our framework is also flexible to incorporate
prior knowledge, like the regularity of heart state transition into HSMM.

5.2 RECONSTRUCTION

In this section, we examine the ability of learned generative model by visualizing the reconstructed
signals. Given a sequence x, we use recognition model to get the latent variables z and d, then use
learned K generative RNNs to generate signals within each segment. For the ease of visualization,
we show the results on 1D signal dataset in Fig. 4a and Fig. 4b.

From Fig. 4 we can see the generative RNN correctly captures different characteristics from signals
of different segment labels, such as different frequencies and scales in Sine dataset, or the different
variance patterns in GP dataset. This is essential to distinguish between different segments.

6 CONCLUSION

We presented the R-HSMM, a generalization of HSMM by incorporating recurrent neural generative
model as the emission probability. To eliminate the difficulty caused by such flexible and powerful
model in inference, we introduced the bi-RNN as the encoding distribution via the variational
autoencoder framework to mimic the forward-backward algorithm. To deal with the difficulty of
training VAE containing discrete latent variables, we proposed a novel stochastic distributional penalty
method. We justified the modeling power of the proposed R-HSMM via segmentation accuracy and
reconstruction visualization. From the comprehensive comparison, the proposed model significantly
outperforms the existing models. It should be emphasized that the structured bi-RNN encoder yields
similar performance as the exact MAP inference, while being 400 times faster. Future work includes
further speeding up of our algorithm, as well as generalizing our learning algorithm to other discrete
variational autoencoder.

9

Published as a conference paper at ICLR 2017

ACKNOWLEDGMENTS

This project was supported in part by NSF IIS-1218749, NIH BIGDATA 1R01GM108341, NSF
CAREER IIS-1350983, NSF IIS-1639792 EAGER, ONR N00014-15-1-2340, Nvidia and Intel.

REFERENCES

Waleed Ammar, Chris Dyer, and Noah A Smith. Conditional random field autoencoders for un-
supervised structured prediction. In Advances in Neural Information Processing Systems, pp.
3311–3319, 2014.

Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradients through
stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432, 2013.

D. P. Bertsekas. Nonlinear Programming. Athena Scientific, Belmont, MA, second edition, 1999.

Xinchi Chen, Xipeng Qiu, Chenxi Zhu, and Xuanjing Huang. Gated recursive neural network for chi-
nese word segmentation. In Proceedings of Annual Meeting of the Association for Computational
Linguistics, 2015.

Silvia Chiappa. Explicit-duration markov switching models. Foundations and Trends in Machine
Learning, 7:803–886, 2014.

Junyoung Chung, Sungjin Ahn, and Yoshua Bengio. Hierarchical multiscale recurrent neural networks.
arXiv preprint arXiv:1609.01704, 2016.

Bo Dai, Niao He, Hanjun Dai, and Le Song. Provable bayesian inference via particle mirror descent.
In Proceedings of the 19th International Conference on Artificial Intelligence and Statistics, pp.
985–994, 2016.

Nan Du, Hanjun Dai, Rakshit Trivedi, Utkarsh Upadhyay, Manuel Gomez-Rodriguez, and Le Song.
Recurrent marked temporal point processes: Embedding event history to vector. In KDD, 2016.

Emily Fox, Erik B Sudderth, Michael I Jordan, and Alan S Willsky. Nonparametric bayesian learning
of switching linear dynamical systems. In Advances in Neural Information Processing Systems, pp.
457–464, 2009.

Yuanjun Gao, Evan W Archer, Liam Paninski, and John P Cunningham. Linear dynamical neural
population models through nonlinear embeddings. In Advances in Neural Information Processing
Systems, pp. 163–171, 2016.

Zoubin Ghahramani and Geoffrey E Hinton. Variational learning for switching state-space models.
Neural computation, 12(4):831–864, 2000.

Shixiang Gu, Sergey Levine, Ilya Sutskever, and Andriy Mnih. Muprop: Unbiased backpropagation
for stochastic neural networks. arXiv preprint arXiv:1511.05176, 2015.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

Matthew Johnson and Alan Willsky. Stochastic variational inference for bayesian time series models.
In Proceedings of the 31st International Conference on Machine Learning (ICML-14), pp. 1854–
1862, 2014.

Matthew J Johnson and Alan S Willsky. Bayesian nonparametric hidden semi-markov models. The
Journal of Machine Learning Research, 14(1):673–701, 2013.

Matthew J Johnson, David Duvenaud, Alexander B Wiltschko, Sandeep R Datta, and Ryan P Adams.
Structured vaes: Composing probabilistic graphical models and variational autoencoders. arXiv
preprint arXiv:1603.06277, 2016.

Jamey Kain, Chris Stokes, Quentin Gaudry, Xiangzhi Song, James Foley, Rachel Wilson, and
Benjamin de Bivort. Leg-tracking and automated behavioural classification in drosophila. Nature
communications, 4:1910, 2013.

10

Published as a conference paper at ICLR 2017

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Lingpeng Kong, Chris Dyer, and Noah A Smith. Segmental recurrent neural networks. arXiv preprint
arXiv:1511.06018, 2015.

Rahul G Krishnan, Uri Shalit, and David Sontag. Deep kalman filters. arXiv preprint
arXiv:1511.05121, 2015.

Scott W Linderman, Andrew C Miller, Ryan P Adam, David M Blei, Liam Paninski, and Matthew J
Johnson. Recurrent switching linear dynamical systems. arXiv preprint arXiv:1610.08466, 2016.

K. Swersky M. Schmidt. crfchain: Matlab code for chain-structured conditional random fields with
categorical features., 2008. URL https://www.cs.ubc.ca/~schmidtm/Software/
crfChain.html.

Andriy Mnih and Karol Gregor. Neural variational inference and learning in belief networks. arXiv
preprint arXiv:1402.0030, 2014.

Andriy Mnih and Danilo J Rezende. Variational inference for monte carlo objectives. arXiv preprint
arXiv:1602.06725, 2016.

J. Munkres. Algorithms for the assignment and transportation problems. Journal of SIAM, 5(1):
32–38, 1957.

Kevin P Murphy. Hidden semi-markov models (hsmms). 2002.

Kevin P. Murphy. Machine learning: a probabilistic perspective. MIT Press, 2012.

Lawrence R Rabiner. A tutorial on hidden markov models and selected applications in speech
recognition. Proceedings of the IEEE, 77(2):257–286, 1989.

Tapani Raiko, Mathias Berglund, Guillaume Alain, and Laurent Dinh. Techniques for learning binary
stochastic feedforward neural networks. arXiv preprint arXiv:1406.2989, 2014.

Jorge-L Reyes-Ortiz, Luca Oneto, Albert Samà, Xavier Parra, and Davide Anguita. Transition-aware
human activity recognition using smartphones. Neurocomputing, 171:754–767, 2016.

David Springer, Lionel Tarassenko, and Gari Clifford. Logistic regression-hsmm-based heart sound
segmentation. 2015.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neural networks.
In Advances in neural information processing systems, pp. 3104–3112, 2014.

Yichuan Tang and Ruslan R Salakhutdinov. Learning stochastic feedforward neural networks. In
Advances in Neural Information Processing Systems, pp. 530–538, 2013.

P. M. Williams. Bayesian conditionalisation and the principle of minimum information. British
Journal for the Philosophy of Science, 31(2):131–144, 1980.

Shun-Zheng Yu. Hidden semi-markov models. Artificial Intelligence, 174(2):215–243, 2010.

Shun-Zheng Yu and Hisashi Kobayashi. An efficient forward-backward algorithm for an explicit-
duration hidden markov model. Signal Processing Letters, IEEE, 10(1):11–14, 2003.

Arnold Zellner. Optimal Information Processing and Bayes’s Theorem. The American Statistician,
42(4), November 1988.

11

https://www.cs.ubc.ca/~schmidtm/Software/crfChain.html
https://www.cs.ubc.ca/~schmidtm/Software/crfChain.html

Published as a conference paper at ICLR 2017

Appendix
A OPTIMIZING DYNAMIC PROGRAMMING

A.1 SQUEEZE THE MEMORY REQUIREMENT

In this section, we show that the Eq. 13 can be computed in a memory efficient way. Specifically, the
dynamic programming procedure can be done with O(|x|K) memory requirement, and caching for
precomputed emission probabilities requires O(D2K) memory space.

Update forward variable α Note that in Eq. 13, when r > 1, we can update αt(j, r) deterministi-
cally. So it is not necessary to keep the records for r > 1.

Specifically, let’s only record αt(j, 1), and do the updates in a similar way as in Eq. 13. The only
difference is that, when constructing the answer, i.e., the last segment solution, we need to do a loop
over all possible z and d in order to find the best overall segmentation solution.

It is easy to see that the memory consumption is O(|x|K).

Caching emission probability At each time step t, we compute P (xt+r|xt:t+r−1, z = j) for each
j ∈ Z and r ∈ D. That is to say, we compute all the emission probabilities of observations starting
from time t, and within max possible duration D. This can be done by performing feed-forward
of K RNNs. After that, storing these results will require O(KD) space. For simplicity, we let
etj,r = P (xt+r|xt:t+r−1, z = j), where et ∈ RK×D.

Note that, at a certain time step t, we would require the emission probability of observations
P (xt|xt−r+1:t−1, z = j) for some j ∈ Z and r ∈ D. In this case, the corresponding first observation
is xt−r. That is to say, we should keep et−D+1, . . . , et at time step t. This makes the memory
consumption goes to O(KD2)

A.2 SQUEEZE THE TIME COMPLEXITY

In Eq. 13, the most expensive part is when r = 1 and t > 1. If we solve this in a naive way, then this
step would require O(|x|K2D) for time complexity, which is quite expensive.

Here we adopt similar technique as in Yu & Kobayashi (2003). Let γt(i) = maxr′∈D αt−1(i, r′),
then we can get

αt(j, r) = max
i∈Z

max
r′∈D

αt1(i, r′) +
1

1 + λ
log(Ai,jBj,1P (xt|z = j)) (17)

+
λ

1 + λ
logQψ(zt−r+1 = j, dt−r+1 = r|x)

= max
i∈Z

γt−1(i) +
1

1 + λ
log(Ai,jBj,1P (xt|z = j)) (18)

+
λ

1 + λ
logQψ(zt−r+1 = j, dt−r+1 = r|x)

This reduces the complexity to be O(|x|K2).

12

Published as a conference paper at ICLR 2017

-4

-3

-2

-1

0

1

2

3

R
ec

on
st

ru
ct

ed

200 400 600 800 1000 1200 1400

-2

-1

0

1

2
O

rig
in

-4

-3

-2

-1

0

1

2

3

R
ec

on
st

ru
ct

ed

200 400 600 800 1000 1200 1400

-2

-1

0

1

2

O
rig

in

Figure 5: More reconstruction illustration on Sine dataset.

-6

-4

-2

0

2

4

R
ec

on
st

ru
ct

ed

200 400 600 800 1000 1200 1400

-6

-4

-2

0

2

4

6

O
rig

in

-6

-4

-2

0

2

4

6

R
ec

on
st

ru
ct

ed

200 400 600 800 1000 1200 1400
-6

-4

-2

0

2

4

6

O
rig

in

Figure 6: More reconstruction illustration on Gaussian Process dataset.

B MORE EXPERIMENT RESULTS

B.1 SYNTHETIC DATASETS

The reconstructed signals from the original signals are shown in Fig. 5 and Fig. 6 for sine dataset
and gaussian Process dataset respectively. We can see the reconstructed signal almost recovered the
original signal. The RNN captured the key differences of states, such as the frequency and scale;
while in gaussian process dataset, it also recovered the complicated pattern involving long term
dependencies.

We show the confusion matrix of all methods on synthetic sine and gaussian process dataset in
Figure 7 and Figure 8 respectively.

B.2 HUMAN ACTIVITY

The confusion matrices of our method and two baseline algorithms are shown in Figure 9.

In Figure 10, we also show several other segmentation results on different testing sequences.

B.3 DROSOPHILA

The confusion matrices of our method and two baseline algorithms are shown in Figure 11.

Since each sequence is too long to be clearly shown in one figure, we split the segmentation results of
one sequence into four parts, and show them in Figure 12.

B.4 HEART SOUND RECORDS

The confusion matrices of our method and two baseline algorithms are shown in Figure 13.

13

Published as a conference paper at ICLR 2017

1 2 3

predicted class

1

2

3

tr
ue

 c
la

ss

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(a) rHSMM-dp

1 2 3

predicted class

1

2

3

tr
ue

 c
la

ss

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(b) rHSMM-fw

1 2 3

predicted class

1

2

3

tr
ue

 c
la

ss

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(c) subHSMM

1 2 3

predicted class

1

2

3

tr
ue

 c
la

ss

0.1

0.2

0.3

0.4

0.5

0.6

(d) HSMM

1 2 3

predicted class

1

2

3

tr
ue

 c
la

ss

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(e) HDP-HSMM

1 2 3

predicted class

1

2

3

tr
ue

 c
la

ss

0

0.1

0.2

0.3

0.4

0.5

(f) CRF-AE

Figure 7: Confusion matrix on Synthetic Sine dataset.

1 2 3

predicted class

1

2

3

tr
ue

 c
la

ss

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(a) rHSMM-dp

1 2 3

predicted class

1

2

3

tr
ue

 c
la

ss

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(b) rHSMM-fw

1 2 3

predicted class

1

2

3

tr
ue

 c
la

ss

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(c) subHSMM

1 2 3

predicted class

1

2

3

tr
ue

 c
la

ss

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(d) HSMM

1 2 3

predicted class

1

2

3

tr
ue

 c
la

ss

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(e) HDP-HSMM

1 2 3

predicted class

1

2

3

tr
ue

 c
la

ss

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

(f) CRF-AE

Figure 8: Confusion matrix on Synthetic Gaussian Process dataset.

Also, we split the segmentation results of one sequence into four parts, and show them in Figure 14.

14

Published as a conference paper at ICLR 2017

1 2 3 4 5 6 7 8 9 10 11 12

predicted class

1

2

3

4

5

6

7

8

9

10

11

12

tr
ue

 c
la

ss

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(a) rHSMM-dp

1 2 3 4 5 6 7 8 9 10 11 12

predicted class

1

2

3

4

5

6

7

8

9

10

11

12

tr
ue

 c
la

ss

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(b) rHSMM-fw

1 2 3 4 5 6 7 8 9 10 11 12

predicted class

1

2

3

4

5

6

7

8

9

10

11

12

tr
ue

 c
la

ss

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(c) subHSMM

1 2 3 4 5 6 7 8 9 10 11 12

predicted class

1

2

3

4

5

6

7

8

9

10

11

12

tr
ue

 c
la

ss

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(d) HSMM

1 2 3 4 5 6 7 8 9 10 11 12

predicted class

1

2

3

4

5

6

7

8

9

10

11

12

tr
ue

 c
la

ss

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(e) HDP-HSMM

1 2 3 4 5 6 7 8 9 10 11 12

predicted class

1

2

3

4

5

6

7

8

9

10

11

12

tr
ue

 c
la

ss

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(f) CRF-AE

Figure 9: Confusion matrix on Human Activity dataset.

C
R

F
-A

E
H

D
P

-H
S

M
M

H
S

M
M

su
bH

S
M

M
rH

S
M

M
-f

w
rH

S
M

M
-d

p

200 400 600 800 1000 1200 1400 1600 1800 2000

-0.5

0

0.5

1

1.5

gr
ou

nd
T

ru
th

Walk Walk upstairs Walk downstairs Sitting Standing Laying

Stand to sit Sit to stand Sit to lie Lie to sit Stand to lie Lie to stand

Figure 10: More segmentation results on Human Activity dataset.

1 2 3 4 5 6 7 8 9 10 11

predicted class

1

2

3

4

5

6

7

8

9

10

11

tr
ue

 c
la

ss

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) rHSMM-dp

1 2 3 4 5 6 7 8 9 10 11

predicted class

1

2

3

4

5

6

7

8

9

10

11

tr
ue

 c
la

ss

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) rHSMM-fw

1 2 3 4 5 6 7 8 9 10 11

predicted class

1

2

3

4

5

6

7

8

9

10

11

tr
ue

 c
la

ss

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c) subHSMM

1 2 3 4 5 6 7 8 9 10 11

predicted class

1

2

3

4

5

6

7

8

9

10

11

tr
ue

 c
la

ss

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(d) HSMM

1 2 3 4 5 6 7 8 9 10 11

predicted class

1

2

3

4

5

6

7

8

9

10

11

tr
ue

 c
la

ss

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(e) HDP-HSMM

1 2 3 4 5 6 7 8 9 10 11

predicted class

1

2

3

4

5

6

7

8

9

10

11

tr
ue

 c
la

ss

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(f) CRF-AE

Figure 11: Confusion matrix on Drosophila dataset.

15

Published as a conference paper at ICLR 2017

Figure 12: More segmentation results on Drosophila dataset.

1 2 3 4

predicted class

1

2

3

4

tr
ue

 c
la

ss

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(a) rHSMM-dp

1 2 3 4

predicted class

1

2

3

4

tr
ue

 c
la

ss

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(b) rHSMM-fw

1 2 3 4

predicted class

1

2

3

4

tr
ue

 c
la

ss

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(c) subHSMM

1 2 3 4

predicted class

1

2

3

4

tr
ue

 c
la

ss

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

(d) HSMM

1 2 3 4

predicted class

1

2

3

4

tr
ue

 c
la

ss

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(e) HDP-HSMM

1 2 3 4

predicted class

1

2

3

4

tr
ue

 c
la

ss

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(f) CRF-AE

Figure 13: Confusion matrix on Heart Sound dataset.

16

Published as a conference paper at ICLR 2017

Figure 14: More segmentation results on Heart Sound dataset.

17

	Introduction
	Model Architecture
	sequential variational autoencoder
	Learning via stochastic distributional penalty method
	Updating
	Updating and

	Experiments
	Segmentation Accuracy
	Reconstruction

	Conclusion
	Optimizing Dynamic Programming
	Squeeze the memory requirement
	Squeeze the time complexity

	More Experiment Results
	Synthetic Datasets
	Human Activity
	Drosophila
	Heart Sound Records

