KNET: A General Framework for Learning Word Embedding Using
Morphological Knowledge

QING CUI, Tsinghua University

BIN GAO and JIANG BIAN, Microsoft Research
SIYU QIU, Nankai University

HANJUN DAI, Fudan University

TIE-YAN LIU, Microsoft Research

Neural network techniques are widely applied to obtain high-quality distributed representations of words
(i.e., word embeddings) to address text mining, information retrieval, and natural language processing tasks.
Most recent efforts have proposed several efficient methods to learn word embeddings from context such that
they can encode both semantic and syntactic relationships between words. However, it is quite challenging to
handle unseen or rare words with insufficient context. Inspired by the study on the word recognition process
in cognitive psychology, in this article, we propose to take advantage of seemingly less obvious but essentially
important morphological knowledge to address these challenges. In particular, we introduce a novel neural
network architecture called KNET that leverages both words’ contextual information and morphological
knowledge to learn word embeddings. Meanwhile, this new learning architecture is also able to benefit from
noisy knowledge and balance between contextual information and morphological knowledge. Experiments
on an analogical reasoning task and a word similarity task both demonstrate that the proposed KNET
framework can greatly enhance the effectiveness of word embeddings.

CCS Concepts: ® Information systems —> Language models; ® Computing methodologies —
Lexical semantics; ® Computing methodologies — Phonology/morphology; ®© Computing
methodologies — Neural networks

Additional Key Words and Phrases: Neural network, word embedding, morphological knowledge

ACM Reference Format:

Qing Cui, Bin Gao, Jiang Bian, Siyu Qiu, Hanjun Dai, and Tie-Yan Liu. 2015. KNET: A general framework
for learning word embedding using morphological knowledge. ACM Trans. Inf. Syst. 34, 1, Article 4 (August
2015), 25 pages.

DOLI: http://dx.doi.org/10.1145/2797137

1. INTRODUCTION

Neural network techniques have been widely applied to solve text mining, information
retrieval (IR), and natural language processing (NLP) tasks, the basis of which yields
obtaining high-quality distributed representations of words in a low-dimensional space
(i.e., word embeddings). In recent years, efficient methods, such as the continuous bag-
of-word (CBOW) model and the continuous Skip-gram (Skip-gram) model [Mikolov
et al. 2013b], have been proposed to leverage the surrounding context of a word in

Authors’ addresses: Q. Cui, Department of Mathematical Sciences, Tsinghua University, Beijing, 100084,
P. R. China; email: cuiqing.thu@gmail.com; B. Gao, J. Bian, and T.-Y. Liu, Microsoft Research, 13F, Bldg
2, No. 5, Danling St Beijing, 100080, P. R. China; emails: bingao@microsoft.com, jiang.bian.prc@gmail.com,
tyliu@microsoft.com; S. Qiu, Nankai University, Tianjin, 300071, P. R. China; email: ppqq2356@gmail.com;
H. Dai, Fudan University, Shanghai, 200433, P. R. China; email: daihanjun@gmail.com.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.

© 2015 ACM 1046-8188/2015/08-ART4 $15.00

DOI: http://dx.doi.org/10.1145/2797137

ACM Transactions on Information Systems, Vol. 34, No. 1, Article 4, Publication date: August 2015.

http://dx.doi.org/10.1145/2797137
http://dx.doi.org/10.1145/2797137

4:2 Q. Cui et al.

documents to transform words into vectors (i.e., word embeddings) in a continuous
space, which captures both semantic and syntactic relationships between words. The
underlying principle in these works lies in that words that are syntactically or seman-
tically similar should have similar surrounding contexts.

While the aforementioned works have demonstrated their effectiveness in various
tasks, they also suffer from a couple of limitations.

(1) It is difficult to obtain word embeddings for new words since they are not included
in the previous vocabulary. Some previous studies [Mikolov 2012] used a default
index to represent all unknown words, but such a solution will inevitably lose
information for emerging words.

(2) The embeddings for rare words are unreliable due to the insufficient surrounding
contexts. Since the aforementioned works adopt statistical methods, when a word
has only a few occurrences in the training data, they will fail in extracting statistical
clues to correctly map the word into the embedding space.

In sharp contrast, according to the studies on word recognition in cognitive psychol-
ogy [Ehri et al. 1991; Ehri 2005], when a human looks at a word, no matter new or
rare, he or she can figure out effective ways to understand it. For instance, one some-
times conducts phonological recoding through blending graphemes into phonemes and
blending syllabic units into recognizable words; one may also analyze the root/affix
of the new word so as to build its connections with his or her known words. Suppose
the new word is inconveniently. Given its root and affixes (i.e., in-convenient-ly), it is
natural to guess that it is the adverb form of inconvenient and the latter is probably
the antonym of convenient. Henceforth, morphological word similarity can act as an
effective bridge for understanding new or rare words based on known words in the
vocabulary. Inspired by this word recognition process, we propose using morphological
knowledge to enhance the deep learning framework for learning word embedding. In
particular, beyond the contextual information already used in CBOW and Skip-gram,
we take advantage of morphological similarity between words in the learning process
so as to handle new or rare words.

Although the morphological knowledge contains invaluable information, it might be
risky to blindly rely on it. The reason is that the prediction based on morphological
word similarity is somehow only a kind of guess, and there exists many counterexam-
ples inconsistent with it. For example, if only looking at the morphological similarity,
one may link convention to convenient since they share a long substring. However, it is
clear that these two words are neither syntactically nor semantically similar. In this
case, if we stick to the morphological knowledge, the effectiveness of the learned word
embeddings could be even worse. To tackle this issue, we once again leverage the find-
ings regarding word recognition in cognitive psychology [Ehri et al. 1991; Ehri 2005]. It
has been revealed that humans can take advantage of the contextual information (both
the context at the reading time and the context in his or her memory) to correct the
unreliable morphological word similarity. By comparing their respective contexts, one
can distinguish between convenient and convention and weaken the morphological con-
nection between these two words in his or her mind. Inspired by this, we also propose
updating the morphological knowledge during our learning process. Specifically, we
will not fully trust the morphological knowledge and will change it so as to maximize
the consistency between contextual information and morphological word similarity.

To sum up the previous discussions, we actually develop a novel neural network
architecture that can leverage morphological word similarity for word embedding. Our
proposed framework consists of a contextual information branch and a morphologi-
cal knowledge branch. On one hand, we adopt the state-of-the-art Skip-gram model
[Mikolov et al. 2013b] as our contextual information branch for its efficiency and ef-
fectiveness. On the other hand, we explore edit distance, longest common substring

ACM Transactions on Information Systems, Vol. 34, No. 1, Article 4, Publication date: August 2015.

KNET: A General Framework for Learning Word Embedding Using Morphological Knowledge 4:3

similarity, morpheme similarity, and syllable similarity as morphological knowledge
to build a relation matrix between words and put the relation matrix into the mor-
phological knowledge branch. These two branches share the same word embedding
space, and they are combined together using tradeoff coefficients in order to feed for-
ward to the output layer to predict the target word. The back-propagation stage will
modify the tradeoff coefficients, word embeddings, and weights in the relation matrix
layer by layer. We call the proposed framework KNET, for it is a Knowledge-powered
neural NETwork. We have conducted experiments on a publicly available corpus, and
the results demonstrate that our proposed KNET method can help produce improved
word representations as compared with the state-of-the-art methods on an analogical
reasoning task and a word similarity task.
The main contributions of the article include the following:

(1) We have proposed a general and robust neural network framework called KNET
that can effectively leverage both contextual information and morphological knowl-
edge to learn word embeddings.

(2) The KNET framework can learn high-quality word embeddings especially on rare
words and new words with the help of morphological knowledge even when the
knowledge is not very reliable.

(3) We also conduct some experimental studies to gain insight about how KNET can
benefit from noisy knowledge and balance between contextual information and
morphological knowledge.

The rest of the article is organized as follows. We briefly review the related work on
word embedding using deep neural networks in Section 2. In Section 3, we describe the
proposed framework to leverage morphological knowledge in word embedding using
deep neural networks. The experimental results are reported in Section 4. The article
is concluded in Section 5.

2. RELATED WORK

Word embedding as continuous vectors has been studied for a long time [Hinton et al.
1986]. Many different types of models were proposed for learning continuous represen-
tations of words, such as the well-known Latent Semantic Analysis (LSA) [Hofmann
1999] and Latent Dirichlet Allocation (LDA) [Blei et al. 2003]. However, such prob-
abilistic approaches usually yield limitations in terms of scalability. Recently, deep
learning methods have been applied to obtain continuous word embeddings to solve a
variety of text mining, information retrieval, and natural language processing tasks
[Collobert and Weston 2008; Glorot et al. 2011; Mikolov et al. 2013a, 2013b; Socher
et al. 2011; Turney 2013; Turney and Pantel 2010; Deng et al. 2013; Collobert et al.
2011; Mnih and Hinton 2008; Turian et al. 2010]. For example, Collobert and Weston
[2008] and Collobert et al. [2011] proposed a unified neural network architecture that
learns word representations based on large amounts of unlabeled training data to deal
with several different natural language processing tasks.

Most recently, Mikolov et al. [2013a, 2013b] proposed the continuous bag-of-words
model (CBOW) and the continuous skip-gram model (Skip-gram) for learning dis-
tributed representations of words also from a large amount of unlabeled text data;
these models can map the semantically or syntactically similar words to close posi-
tions in the word embedding space, based on the intuition that the contexts of the
similar words are similar. In particular, in the Skip-gram model, a sliding window is
employed on the input text stream to generate the training samples. In each sliding
window, the model tries to use the central word as input to predict the surround-
ing words. Specifically, the input word is represented in the 1-of-V format, where
V is the size of the vocabulary of the training data and each word in the vocabu-
lary is represented as a vector with only one nonzero element. In the feed-forward

ACM Transactions on Information Systems, Vol. 34, No. 1, Article 4, Publication date: August 2015.

4:4 Q. Cui et al.

process, the input word is first mapped into the embedding space by the weight matrix
M. After that, the embedding vector is mapped back to the 1-of-V space by another
weight matrix M, and the resulting vector is used to predict the surrounding words
after applying the softmax function on it. In the back-propagation process, the pre-
diction errors are propagated back to the network to update the two weight matrices.
When the training process converges, the weight matrix M is used as the learned word
embeddings. Though the previous works like Skip-gram perform well on some NLP
tasks, they still cannot produce high-quality word embeddings for rare words and un-
known words since they do not leverage the rich extra knowledge when learning word
embeddings.

There are some knowledge-related word embedding works in the literature, but most
of them were targeted at the problems of knowledge base completion and enhancement
[Bordes et al. 2011; Socher et al. 2013; Weston et al. 2013] rather than producing
high-quality word embeddings, which is different with our work. In contrast, some
recent efforts have explored how to take advantage of knowledge to produce better
word embedding. For example, Qiu et al. [2014] introduced a colearning framework
to produce both the word representation and the morpheme representation such that
each of them can be mutually reinforced. Yu and Dredze [2014] proposed a new learning
objective that ingrates both a neural language model objective and a semantic prior
knowledge objective, which can result in better word embedding for semantic tasks.
Moreover, a recent work [Bian et al. 2014] took empirical studies on how to incorporate
various types of knowledge in order to enhance word embedding. According to this
work, morphological, syntactic, and semantic knowledge are all valuable to improve
the quality of word embedding. In this article, as we aim at obtaining high-quality word
embeddings for rare words and unknown words, we focus on leveraging morphological
knowledge since it can generate critical correlation between rare/unknown words with
popular ones.

Some previous works have attempted to include morphology in continuous models,
especially in the speech recognition field, including Letter n-gram [Sperr et al. 2013]
and feature-rich DNN-LMs [Mousa et al. 2013]. The first work improves the letter-
based word representation by replacing the 1-of-V word input of restricted Boltzmann
machine with a vector indicating all n-grams of order n and smaller that occur in the
word. Additional information such as capitalization is added as well. In the model of
feature-rich DNN-LMs, the authors expand the inputs of the network to be a mixture
of 142 selected full words and morphemes together with their features such as mor-
phological tags. Both of these works intend to capture more morphological information
so as to better generalize to rare/unknown words and to lower the out-of-vocabulary
rate.

In the NLP and text mining domain, Luong et al. [2013] proposed a morphological
Recursive Neural Network (morphoRNN) that combines recursive neural networks and
neural language models to learn better word representations, in which they regarded
each morpheme as a basic unit and leveraged neural language models to consider
contextual information in learning morphologically aware word representations. We
will compare our proposed model with morphoRNN in Section 4.4.

3. WORD EMBEDDING POWERED BY MORPHOLOGICAL KNOWLEDGE

We first introduce how people learn words and understand text by leveraging the
morphological knowledge and then describe the knowledge-powered neural network
architecture for learning effective word embedding based on both contextual informa-
tion and morphological knowledge. Afterward, we mention four types of morphological
knowledge that are often used by people as well as our framework.

ACM Transactions on Information Systems, Vol. 34, No. 1, Article 4, Publication date: August 2015.

KNET: A General Framework for Learning Word Embedding Using Morphological Knowledge 4:5

3.1. Word Recognition Process

According to the study on word recognition in cognitive psychology [Ehri et al. 1991;
Ehri 2005], when a human learns a new language, he or she usually starts from
learning some basic words and gradually enlarges his or her vocabulary during the
learning process. He or she also learns the language grammar and morphological
knowledge so as to build cross-links between words in his or her knowledge base; for
example, the adjective form of care is careful and its adverb form is carefully. When he
or she encounters an unknown or unfamiliar word, he or she will try to explore several
different channels to recognize it [Ehri et al. 1991]:

Recoding (or Decoding). One can either sound out and blend graphemes into
phonemes or work with larger chunks of letters to blend syllables into recognizable
words. For example, psychology can be pronounced as psy-cho-lo-gy, in which psy means
know or study, cho means mind or soul, and /ogy means academic discipline. Thus, one
may guess psychology is an academic discipline that studies something in the mind or
soul.

Analogizing. One can use his or her known words to read the new word [Goswami
1986]. If the new word is morphologically similar to several known words, one will
guess the meaning of the new words based on the meanings of these known words.
For example, admob appears in a news article as a new word to a reader. The reader
may quickly understand that it is related the advertisements on mobile devices, simply
because admob is composed by ad and mob, which are substrings of advertisement and
mobile, respectively.

Prediction. One can use context and letter clues to directly guess the meaning of
the unknown word [Chapman 1998]. Sometimes, one may even retrieve the context
of the word in his or her memory and make associations to the current context to guess
the meaning of the word. For example, inmate is an unknown word to a reader, but
according to the context Inmates and police officers held a basketball game in the Fox
River Prison last Tuesday evening, one can easily guess that inmate means prisoner in
the sentence.

In this process, the different channels may reinforce each other. On one hand, some-
times contexts could be insufficient; for example, there are simply not many contexts
surrounding the unknown word, and there is no historical context in the memory ei-
ther. In this case, it is extremely hard to directly predict the meaning of the word.
In contrast, decoding and analogizing could do a good job since they can work in a
context-free manner. On the other hand, sometimes decoding and analogizing can re-
sult in errors. For example, convention and convenient are morphologically very similar
since they share a long substring conven; however, their meanings are quite different.
In this case, blindly relying on morphological knowledge will bring in a lot of noise, but
contextual information can help one to successfully distinguish these two words. By
refining one’s morphological knowledge with the help of the contextual information, he
or she can avoid the misrecognition.

Please note that all of the previous process happens within just a second, which
enables humans to be super powerful in recognizing unknown or unfamiliar words.
This phenomenon strongly inspires us to leverage both morphological knowledge and
contextual information to learn word embeddings. Accordingly, we propose a novel
neural network architecture that consists of a morphological knowledge branch and a
contextual information branch. Details will be given in the next subsection.

3.2. Neural Network Architecture for KNET

In this subsection, we describe our proposed new neural network architecture that
leverages both contextual information and morphological knowledge to learn word

ACM Transactions on Information Systems, Vol. 34, No. 1, Article 4, Publication date: August 2015.

4:6 Q. Cui et al.

embedding. We use the Skip-gram model [Mikolov et al. 2013b] as the basis of our pro-
posed framework.! Skip-gram is a neural network model to learn word representations,
the underlying principle of which is that similar words should have similar contexts.?

To be more specific, given a sequence of training words w1, we, ..., wr, the objective
of the Skip-gram model is to maximize the following average log probability:
1 X
T Z Z log p(wy jlwy), (1)

t=1 —N<j<N,j#0

where w; and w;; are two words inside a sliding window, and N indicates that the size
of the sliding window is 2N + 1. The conditional probability p(w;, j|w,) is defined using
the following softmax function:

T
exp(v,,,~ Vu,)

- 7 (2)
Zw exp(v,,UT Vuy;)

plwolwy) =

where v,, and v, are the input and output representation vectors of w, and the sum
in the denominator is over all words in the vocabulary. Here we use w; to denote the
input word (i.e., w;) and use wo to denote the output word G.e., w4 ;).

It is difficult and impractical to directly optimize the previous objective because
computing the derivative is proportional to the vocabulary size, which is often very
large. Several approaches [Morin and Bengio 2005; Bengio et al. 2003; Bengio and
Senecal 2008] have been employed to tackle this problem. The state-of-the-art method
is noise-contrastive estimation (NCE) [Gutmann and Hyvéarinen 2012], which aims at
fitting unnormalized probabilistic models. NCE can approximate the log probability
of the softmax function by performing logistic regression to discriminate between the
observed data and some artificially generated noises. It was first adapted in the neural
language model in Mnih and Teh [2012] and was then applied to the inverse vector
log-bilinear model [Mnih and Kavukcuoglu 2013]. Another simpler method is negative
sampling (NEG) [Mikolov et al. 2013b], which generates % noise samples for each input
word to estimate the objective.

By using NEG, the softmax conditional probability p(w, ;|w;) will be replaced by

k
JO) = logo(v’onvw,) + ZEwi,\,Pn(w) [logo(- vl’uiva,)], (3)
i—1

where 6 is the model parameter including the word embeddings, o denotes the logistic
function, and P,(w) represents the noise distribution, which is set as the 3/4 power of
the unigram distribution U(w), that is, P,(w) = U(w)**/Z (Z is a normalizer) [Mikolov
et al. 2013b]. Then, we can estimate the gradient of J(6) by computing

v T k - T
8?29) - (1 B U(U:UOTUWI))% - Z [U(UI/IJ,'TUWI)%}' 4)
i=1

By summing over k& noise samples instead of a sum over the entire vocabulary,
the training time yields a linear scale to the number of noise samples and becomes
independent of the vocabulary size.

INote that although we task the Skip-gram model as an example to illustrate our framework, a similar
framework can be developed on the basis of any other word embedding models.
2In our model and experiments, we used the sliding window as the context of a word.

ACM Transactions on Information Systems, Vol. 34, No. 1, Article 4, Publication date: August 2015.

KNET: A General Framework for Learning Word Embedding Using Morphological Knowledge 4:7

1-of-V representation

M

R (relation matrix)
Vocabulary Space

(V-dimension)

Embedding Space Vocabulary Space
(D-dimension) (V-dimension)

Vocabulary Space Embedding Space
(V-dimension) (D-dimension)

Fig. 1. The neural network architecture of the proposed KNET framework.

To incorporate morphological knowledge into the learning process, we propose a new
neural network architecture. Beyond the basic Skip-gram model that predicts a target
word based on its context, the proposed new method introduces a parallel branch that
leverages morphological knowledge to assist predicting the target word, as shown in
Figure 1. Intuitively, when a word w; is the central word in the context window, we
predict the surrounding words by leveraging not only the representation of word w;
as contextual information (referred to as contextual information branch) but also the
representations of the words that are morphologically similar to w, (referred to as mor-
phological knowledge branch). Therefore, the objective of the proposed model is the
same as Equation (1) (i.e., we want to maximize the average probability of word predic-
tion) except that we replace the input word representation v, in the softmax function
in Equation (2) by a new formulation, which is combined from both the contextual
information branch and the morphological knowledge branch. Now we introduce the
detailed formulation of v,,.

According to Figure 1, to obtain the representation of a central word w; from the
morphological knowledge branch, it is necessary to find the set of words that are mor-
phologically similar to w;, which is denoted as R;. Then, we can extract the embedding of
each word in R; from the embedding matrix M shared with the contextual information
branch. After that, a corresponding knowledge representation of R; can be computed
by feeding forward the relationship layer, which is written as

U}{t = Z S(U)t, U))Uw, (5)

weR,

where s(w;, w) is initialized with the similarity score, the methods of computing which
will be introduced in Section 3.3. Actually v,, is the ith row of matrix M, where i is
the index of the word w in the vocabulary, and s(wq, we) is the element of relation
matrix R at (i, j) that are the indices of words w; and we, respectively. To ensure the
quality of morphological knowledge and control the number of parameters, we only
leverage the top words with the highest morphological similarity scores as R;. For
example, in our experiments, an input word can only connect to at most five words
in the relationship layer. This sparse structure will not change during training, and
only the weights of these connections will be updated. Therefore, we will not suffer
from a huge number of parameters even if R is learned. To sum up, the morphological

ACM Transactions on Information Systems, Vol. 34, No. 1, Article 4, Publication date: August 2015.

4:8 Q. Cui et al.

similarity score calculated in Section 3.3 is only employed as the initial values of R as
well as for determining the top five words in R;.

Finally, an aggregated representation of the input word, denoted as v,,, can be
calculated as the weighted sum of the representations from the contextual information
branch and the morphological knowledge branch, that is,

Vy; = Cl(wt)th + C2(wt)vRtv (6)

where ¢1(-) and cy(-) are the functions of w; and yield much dependency on the word
frequency. Intuitively, frequent words are associated with much more training samples
than rare words, such that it is easy to collect rich contextual information for frequent
words, while the contextual information for rare words might be insufficient. In con-
trast, the volume of morphological knowledge of a word usually has little correlation to
the word frequency, and thus rare words can still rely more on the morphological knowl-
edge even though the contextual information is not reliable. Therefore, the balancing
function ¢1(-) and cs(-) should be related to word frequency. Specifically, we divide the
words into a number of buckets according to their frequencies, and all the words in the
same bucket will share the same values of ¢1(:) and cy(-).

A more explicitly intuitive way to interpret the previous model is as follows. For
each word w;, we use one row in the embedding matrix M to encode its contextual
embedding. In addition, by using matrix R, we can identify a couple of morphologically
similar words to w;. Then we can also extract the contextual embeddings of these
similar words from M and take the weighted average of these embedding vectors
as the morphological embedding for the original word w;. Then finally, the overall
embedding of w; is computed as the weighted combination of its contextual embedding
and morphological embedding. Matrix M’ is used to predict the surrounding word w; ;
based on the overall embedding of w;. Similar to v,, the output representation vector
v), in Equation (2) is the ith row of matrix M’, where i is the index of the word w in the
vocabulary. In the back-propagation process, the parameters in M, R, M’, and multiple
pairs of ¢; and ¢ (corresponding to different frequency buckets) are updated. When the
training process converges, we take the matrix M as the learned word embeddings. In
our implementation, we take the NEG strategy to calculate the gradient in Equation (4),
in which v,, is substituted by Equation (6), and learn the parameters with standard
gradient descent techniques and error back-propagation procedure. The details of the
back-propagation process and the learning process are described in Appendix A. We
call the proposed framework as KNET, considering that it is a Knowledge-powered
neural NETwork.

3.3. Morphological Knowledge

As compared to Skip-gram, the uniqueness of our model lies in the introduction of the
morphological knowledge branch. In this subsection, we will make discussions on how
we realize this new branch. In particular, we propose four types of naturally defined
knowledge. In the previous four types of knowledge, Edit Distance Similarity and
Longest Common Substring Similarity are string similarity measures, while Morpheme
Similarity and Syllable Similarity are based on morphemes and syllables accordingly.
For ease of reference, we denote all these four types of knowledge as morphological
knowledge. Note that this is not a complete study on morphological knowledge, but we
can use these four specific types as examples to show the effectiveness of the proposed
framework. Any other kinds of knowledge consisting of a pairwise relationship can be
used under the KNET framework.

3.3.1. Edit Distance Similarity (Edit). Edit distance is a way of quantifying how dissimilar
two strings (e.g., words) are by counting the minimum number of operations required

ACM Transactions on Information Systems, Vol. 34, No. 1, Article 4, Publication date: August 2015.

KNET: A General Framework for Learning Word Embedding Using Morphological Knowledge 4:9

to transform one string into the other. The operations might be letter insertion, letter
deletion, or letter substitution. We calculate the edit distance similarity score for two
words w; and wg as

d(w1, wp)

SEgit(wi, we) = 1 — max(ay) 1wg))’

where d(w1, wg) represents the edit distance of the two words and I(wq), [(w2) are the
corresponding word lengths.

3.3.2. Longest Common Substring Similarity (LCS). Longest common substring similarity is
defined as the ratio of the length of the longest shared substring of two words (denoted
by g(w1, we)) and the length of the longer word, that is,

glwi, wa)
max((w1), {(ws))

sres(wi, wo) =

3.3.3. Morpheme Similarity (Morpheme). Morpheme similarity is calculated based on the
shared roots (or stems) and affixes (prefix and suffix) of two words. Suppose each word
of wy; and we can be split into a set of morphemes (denoted by F(w;) and F(ws)); then
the morpheme similarity of the two words is calculated as

|F(w1) () F(wse)
max(|F(wy)|, |F(ws)|)’

SMorpheme =

where | - | outputs the size of the set.

3.3.4. Syllable Similarity (Syllable). Syllable similarity is calculated based on the shared
syllables of two words. Suppose both w; and wy can be split into a set of syllables (de-
noted by G(w1) and G(ws)); then the syllable similarity of the two words is calculated as

|G(w1) () G(ws)]
max(|G(w1)|, |G(ws)|)’
In addition to using these four types of morphological word similarity separately,

one can also combine them together. In the next section, we will conduct experimental
study on all these different choices.

SSyllable =

4. EXPERIMENTAL EVALUATION

In this section, we report the experimental results regarding the effectiveness of our
proposed KNET framework. Our experiments are mainly composed of three parts.
In the first part, we compare KNET with several baselines based on Skip-gram to
show the effectiveness and robustness of our framework. Then we compare KNET
with morphoRNN on two word similarity tasks (one mainly contains frequent words
while the other contains lots of rare and new words) to show that our framework can
achieve high-quality word embedding on rare and new words. After that, we conduct
some case studies to gain a deeper understanding about how KNET can benefit from
noisy knowledge to obtain high-quality word embedding on rare words; we also give an
empirical study to gain insight about the balancing function between the contextual
information branch and the morphological knowledge branch.

4.1. Evaluation Tasks

We evaluated the performance of the learned word representations on the following
two tasks.

ACM Transactions on Information Systems, Vol. 34, No. 1, Article 4, Publication date: August 2015.

4:10 Q. Cui et al.

o
S _
=4
= Analogical Task
= WordSim-353
o = RareWord
S
8
5 8
= ©
5
9]
o o
£ <
P
o
S
o 4

unknown (1, 100] (100, 1000] (1000, 10000] (10000, +)
Bucket for Word Frequency

Fig. 2. Word frequency distributions for the word similarity test sets in the enwiki9 corpus.

4.1.1. Analogical Reasoning Task. The analogical reasoning task was introduced by
Mikolov et al. [2013a]. The task consists of 19,544 questions of the form “a is to b
isascisto_,”denoted asa: b — ¢ : ?. Suppose W is the learned word representation
vector of word w normalized to unit norm. Following Mikolov et al. [2013a], we answer
this question by finding the word d* whose representation vector is the closest to vector

b -a + ¢ according to cosine similarity excluding b and ¢, that is,

ﬁ
d"=arg max (b -a+¢)%x.
xeV ,x#b,x#c

The question is regarded as answered correctly only when d* is exactly the answer
word in the evaluation set. There are two categories in the task, with 8,869 semantic
analogies (e.g., England : London — China : Beijing) and 10,675 syntactic analogies
(e.g., amazing : amazingly — unfortunate : unfortunately).

4.1.2. Word Similarity Task. WordSim-353 [Finkelstein et al. 2001] is a standard dataset
for evaluating vector space models on word similarity. It contains 353 pairs of nouns
without context. Each pair is associated with 13 to 16 human judgments on similarity
and relatedness on a scale from 0 to 10. For example, (cup, drink) received an average
score of 7.25, while (cup, substance) received an average score of 1.92. To evaluate the
quality of the learned word embeddings, we computed Spearman’s p correlation be-
tween the similarity scores calculated by word embeddings and the human judgments.

In addition to WordSim-353, we also used the RareWord dataset [Luong et al. 2013]
to test the performance of the proposed model, which contains 2,034 pairs of rare words.
According to the frequency distribution in the training data enwik9 (see Figure 2), half
of the words in the RareWord are tail words (word frequency < 100), while WordSim-
353 is mainly composed of frequent words. Furthermore, the RareWord dataset contains
more than 400 unknown words (which have not appeared in the training data and thus
do not have word embeddings available by themselves). We make use of these unknown
words to test the capability of our KNET model in dealing with new words. We use vg,
in Equation (5) as the embedding for an unknown word. Specifically, we computed its
similarity to all the known words using a certain type of morphological knowledge, and
then we selected the top five closest known words and calculated the linear combination

ACM Transactions on Information Systems, Vol. 34, No. 1, Article 4, Publication date: August 2015.

KNET: A General Framework for Learning Word Embedding Using Morphological Knowledge 4:11

of their embedding vectors as the representation for the unknown word (the normalized
similarity scores were used as the combination weights).

4.2. Experimental Setup

4.2.1. The Construction of Relation Matrix R. In our experiments, we employed four types of
morphological knowledge. Edit and LCS can be computed directly from the definitions.
For Morpheme, we used a public tool called Morfessor [Creutz and Lagus 2007], which
can split a word into morphological segments with prefix, stem, and suffix tags. For
Syllable, we implemented the hyphenation tool proposed by Liang [1983], which has
been used in many editing software programs including LATgX to break words by
syllables.

For each of them, given a word w, we calculated its similarities to all the other words
and selected the top five words with the highest similarity to build the relation edges in
the weight matrix R, leaving the other edges with zero.? We tested the R matrix built
based on each single type of knowledge, and we also tested the R matrix built based
on several types of knowledge through combination. Specifically, given the four ranked
lists of words from the morphological knowledge, we combined them into a union set
and selected the top five words that got more votes by the four knowledge types, denoted
as Combination. We tried to directly use the top five similar words as the representation
of the word and use the cosine similarity to evaluate the representations. We find that
the representations are so sparse that almost all pairs of words have zero similarity
scores and it is worthless for word representations. Therefore, we do not report the
results of this trivial method here.

4.2.2. The Balancing Parameters. As discussed in Section 3.2, the balancing parameters
in KNET are related to word frequency. Since they are not the main focus of this article,
for simplicity, we used a greedy algorithm to divide the words into a certain number of
buckets. Specifically, if we intend to split words into b buckets, we first rank the words
in the vocabulary by their frequencies in descending order and put the words into
the first bucket sequentially until the sum of the word’s frequency in the first bucket
reaches the 1/b of the total word frequency. After that, we feed the rest of the buckets
consecutively in a similar way, and eventually the sum of the frequency in each of the
b buckets is approximately equal to 1/b of the total frequency. We let all words in one
bucket share the same balance coefficients. In our experiments, we initialize both c;
and cg with 0.5 in each bucket. We set the number of buckets to 1,000 in the analogical
reasoning task and WordSim-353 word similarity task since they are mainly composed
of frequent words, while we set the number of buckets to 100,000 in the RareWord word
similarity task since it contains many rare or unknown words. More discussions about
the balancing between contextual information and morphological knowledge as well
as the relationship with the number of buckets can be found in Section 4.6. Note that
we choose the different number of buckets with the highest performance on separate
tasks, respectively.

4.3. Comparison with Baselines Related to Skip-gram

4.3.1. Datasets. The training set used in this part of experiments is the enwik9 corpus,*
which is built from the first billion characters from Wikipedia. This corpus contains
a total of 123.4 million words. We used Matt Mahoney’s text preprocessing script® to
process the corpus. After preprocessing, all digits were replaced with English words

3In our experiments, the performance varies little when the number of similar words varies from three to 50.
4http:/mattmahoney.net/dc/enwik9.zip.
5http:/mattmahoney.net/dc/textdata.html.

ACM Transactions on Information Systems, Vol. 34, No. 1, Article 4, Publication date: August 2015.

4:12 Q. Cui et al.

(e.g., 3 was replaced with three), and the metadata and hyperlinks were removed.
Furthermore, all words that occurred less than five times in the training data were
discarded from the vocabulary, resulting in a vocabulary of 220,000 words. The out-of-
vocabulary words were ignored in training.

4.3.2. Compared Methods and Experimental Settings. In our experiments, we compare the
following methods:

Skip-gram: this is a popularly used baseline model introduced by Mikolov et al.
[2013Db].

Skip-gram + Edit/LCS/Morpheme/Syllable/Combination Input Feature: this
is a group of baselines using the morphological features as additional inputs during
training of the Skip-gram model. Specifically, the input is no longer a 1-of-V represen-
tation. Instead, we will append the morphological feature, which is the corresponding
row of the relation matrix R, to the 1-of-V vector. Thus, the input is a vector of length
2V and the projection matrix has the size of 2V x D, where D is the dimension of word
embeddings. We denote this group of baselines as Skip-gram + Input Feature.

Skip-gram + Fixed Edit/LCS/Morpheme/Syllable/Combination Relation Ma-
trix: this is the same with our proposed model except that we do not update the
relation matrix while learning the word embedding. We design this baseline to verify
that blindly sticking to the morphological knowledge may even hurt in some cases,
which is coherent with human cognitive psychology. We denote this group of baselines
as Skip-gram + Fixed Relation Matrix.

Skip-gram + Edit/LCS/Morpheme/Syllable/Combination Relation Matrix:
this is the proposed KNET model, in which we employed the same types of morpholog-
ical knowledge and updated all the parameters in the training process. Note that our
model can be degraded to Skip-gram + Input Feature by fixing c1, ¢2, R and not sharing
M in the training process. If we only fix R in KNET, we get Skip-gram + Fixed Relation
Matrix.

In all of these methods, we set the dimension of word embeddings to 100 and the
context windows size to 5. We employed the negative sampling technique to train these
models and the number of negative samples was set to 3.

With these settings, the training time of the proposed model was only about 1.5 times
of the original Skip-gram model, showing that the KNET framework is very efficient.
Actually, its training can finish in about 15 minutes on a single machine with four
cores.

4.3.3. Results. Table I shows the performance of the methods on the two tasks, respec-
tively. RareWord shows the results obtained by representing all unknown words as a
default zero vector. RareWord* shows the results obtained by predicting the embedding
of unknown words with the relation matrix and the embedding of known words using
the method described in Section 4.1.2. In the vertical direction, we can find that the per-
formance of model groups follows the order of Skip + Input Feature < Skip-gram <
Skip-gram + Fixed Relation Matrix < Skip-gram + Relation Matrix (KNET),
where < means worse than.

By Skip-gram < Skip-gram + Fixed Relation Matrix and Skip-gram < Skip-
gram + Relation Matrix (KNET), we can observe the following:

(1) Adding morphological knowledge, either single type or combined knowledge, to the
Skip-gram model can consistently increase all types of accuracies in the analogical
reasoning task and word similarity task. This shows that morphological knowledge
can effectively improve the quality of the learned word embeddings.

(2) Looking inside the Skip-gram + Relation Matrix (KNET) group, we can find that
Morpheme performs the best among the five types of knowledge in terms of semantic

ACM Transactions on Information Systems, Vol. 34, No. 1, Article 4, Publication date: August 2015.

KNET: A General Framework for Learning Word Embedding Using Morphological Knowledge 4:13

Table I. Comparison Between KNET and Baselines Related to Skip-gram on the Analogical
Reasoning Task and the Word Similarity Task

Analogical Reasoning Task Word Similarity Task
Model Semantic|Syntactic| Total
Accuracy | Accuracy | Accuracy | WordSim-353 |RareWord | RareWord *

Skip-gram 21.85% | 34.64% | 28.84% 0.6283 0.1685 -

+ Edit Input Feature 13.67% | 27.85% | 21.41% 0.5788 0.1625 0.3087
+ LCS Input Feature 13.65% | 28.30% | 21.65% 0.6055 0.1679 0.3180
+ Morpheme Input Feature 13.55% | 23.66% | 19.07% 0.5954 0.1595 0.3068
+ Syllable Input Feature 11.94% | 25.30% | 19.24% 0.5657 0.1554 0.2944
+ Combination Input Feature 13.67% | 28.52% | 21.78% 0.5759 0.1659 0.3228
+ Fixed Edit Relation Matrix 21.42% | 40.62% | 31.91% 0.6384 0.1962 0.3595
+ Fixed LCS Relation Matrix 23.48% | 41.24% | 33.18% 0.6452 0.1982 0.3609
+ Fixed Morpheme Relation Matrix | 23.94% | 41.04% | 33.28% 0.6451 0.1800 0.3235
+ Fixed Syllable Relation Matrix 22.48% | 40.61% | 32.38% 0.6482 0.1814 0.3301
+ Fixed Combination Relation Matrix| 21.17% | 43.60% | 33.42% 0.6423 0.2085 0.3686
+ Edit Relation Matrix 23.59% | 43.49% | 34.46% 0.6532 0.2103 0.3797
+ LCS Relation Matrix 23.70% | 44.50% | 35.06% 0.6545 0.2043 0.3700
+ Morpheme Relation Matrix 24.86% | 43.68% | 35.14% 0.6612 0.1909 0.3347
+ Syllable Relation Matrix 24.53% | 41.88% | 34.01% 0.6607 0.1916 0.3371
+ Combination Relation Matrix 23.58% | 46.90% | 36.32% 0.6495 0.2191 0.3932

We report the semantic/syntactic/total accuracy in the analogical reasoning task and Spearman’s p corre-
lation in the word similarity task. The word embeddings are trained on the enwiki9 data with dimension

100.

3

accuracy in the analogical reasoning task and WordSim-353 in the word similarity
task. Since these two tasks focus on the semantic relationship, we hypothesize the
reason is that morphemes (like roots and affixes) are basic units in word composi-
tion, and it implies accurate semantic correlation if two words share the same root.
On the other hand, Combination performs the best in terms of syntactic accuracy in
the analogical reasoning task and RareWord in the word similarity task. Besides,
Edit and LCS are always better than Morpheme and Syllable in these two tasks.
Considering that these tasks contain many rare words and building a connection
to relatively frequent words is the key to learning reasonable word embedding for
rare words, the recall of the truly similar words in these tasks is more critical than
the precision. Edit and LCS naturally have high recall of the truly similar words
because they directly calculate the similarity score in the letter level. Even though
Edit and LCS have high recall, every single type of morphological knowledge has
its own limitations, and thus combining them together will further increase the
recall of truly similar words, which leads to better performance on these two tasks.
Focusing on the performance of Skip-gram + Relation Matrix (KNET) on the word
similarity task, we have the following observations. The average gain on RareWord
(10.08%) is much higher than that on WordSim-353 (4.38%), which illustrates
that leveraging morphological knowledge will especially benefit rare words. Since
there is no sufficient contextual information for the rare words in the training
data, building connections between words using the morphological knowledge will
provide additional evidence for us to generate effective embeddings for these rare
words. While the rare words can benefit from the morphological knowledge, we can
keep the noise brought by it away from the frequent words. The secret is that in our
KNET framework, frequent words rely more on the contextual information while
rare words rely more on the morphological knowledge by balancing between these
two branches. More discussion about this can be seen in Section 4.6. By using the
embeddings of known words and relation matrix to predict those of the unknown

ACM Transactions on Information Systems, Vol. 34, No. 1, Article 4, Publication date: August 2015.

4:14 Q. Cui et al.

words, we can achieve significant improvement on the RareWord, with almost a
100% increment compared with Skip-gram. This indicates that our proposed KNET
framework can effectively deal with new emerging words, which yields a potential
impact for natural language processing applications in the real world.

By Skip-gram + Input Features < Skip-gram < Skip-gram + Fixed Relation
Matrix, we can observe that simply adding morphological knowledge as additional
input features does not work as expected and conversely hurts the language model.
Recall that our KNET framework can be degraded to Skip-gram + Input Features by
fixing c1, c2, R and not sharing M in the training process. We can also obtain Skip-
gram + Fixed Relation Matrix by fixing R from KNET. Thus, the difference between
Skip-gram + Input Features and Skip-gram + Fixed Relation Matrix is fixing ¢y, ¢o
and not sharing M, which leads to the great gap of performance; that is, one is worse
than Skip-gram and the other is better than it. It indicates that ¢q, co and sharing M
bring the core effectiveness of our proposed KNET framework. Actually, M is the chan-
nel that the contextual information branch and the morphological knowledge branch
used to communicate with each other, while ¢; and ¢ are the key factors of balancing
between these two branches. With both of these aspects, our KNET framework can
effectively leverage the morphological knowledge while keeping consistent with the
context. In this perspective, we can easily understand that the language model suffers
from the artificially appended identification when we simply add the noisy morpholog-
ical knowledge as additional input features.

By Skip-gram + Fixed Relation Matrix < Skip-gram + Relation Matrix
(KNET), we verified the hypothesis that blindly sticking to the morphological knowl-
edge may even hurt in some cases and we can leverage the context to avoid the mis-
recognition brought by the morphological knowledge that is coherent with the human
cognitive psychology introduced in Section 3.1. In this manner, the contextual infor-
mation branch and the morphological knowledge branch can reinforce each other. The
morphological knowledge helps when the context is insufficient, while the context can
correct and refine the noisy morphological knowledge.

To sum up, through the comparison of experiment results among these models, we
can claim that our KNET framework is a general, effective, and robust framework that
can leverage both contextual information and morphological knowledge while making
them harmonize with each other. Specifically, with sharing M, these two branches can
communicate; with updating c1, ce, these two branches can balance; and with updating
R, M, these two branches can reinforce each other as a united framework. By analyzing
the results of KNET on two word similarity tasks, we find that our framework can learn
the effective word embedding especially on rare words, which will be further verified
in the next subsection.

4.4. Comparison with the MorphoRNN Model

4.4.1. Datasets and Experimental Settings. To make the comparison fair, we used the
same corpus as Luong et al. [2013], which is the April 2010 snapshot of the Wikipedia
corpus denoted as wiki2010. After the preprocessing similar to enwiki9 and ignoring the
words that occurred less than 10 times, there are 487 million tokens with a vocabulary
of 466,000 words. The experimental settings are almost the same as in the previous
experiments except that we set the dimension of word embeddings to 50 to be consistent
with Luong et al. [2013]. Because they did not publish the codes and only published
the trained word embedding on wiki2010, considering there are many words in the
analogical reasoning task but not in the vocabulary of wiki2010, we cannot fairly
compare morphoRNN with KNET on the analogical reasoning task. Therefore, we will
focus on the word similarity task, which is also the main part in their work, and we

ACM Transactions on Information Systems, Vol. 34, No. 1, Article 4, Publication date: August 2015.

KNET: A General Framework for Learning Word Embedding Using Morphological Knowledge 4:15

Table 1l. Comparison Between KNET and MorphoRNN on the Word Similarity
Task Measured by the Spearman’s p Correlation

Model WordSim-353 | RareWord | UnknownWords
HSMN + csmRNN 0.6458 0.2231 0.1694
C&W + csmRNN 0.5701 0.3436 0.0946
Skip-gram 0.6010 0.2855 -

+ Edit Relation Matrix 0.5953 0.3714 0.3087

+ LCS Relation Matrix 0.6076 0.3780 0.3559

+ Morpheme Relation Matrix 0.5983 0.3647 0.4250

+ Syllable Relation Matrix 0.6021 0.3715 0.3528

+ Combination Relation Matrix 0.6094 0.3752 0.4467

The word embeddings are trained on the wiki2010 data with dimension 50. Here we
refer the numbers reported in their paper directly.

will refer to the numbers reported in their paper. Besides the results on WordSim-
353 and RareWord, we also extracted the unknown words that appear in RareWord
but not in the vocabulary of wiki2010 and built a new test dataset consisting of the
word pairs in RareWord that contain at least one of the previous unknown words. We
denote this test dataset as UnknownWord. There are 60 unknown words and 64 word
pairs in UnknownWord. For the UnknownWord dataset, we used the published word
embeddings of Luong et al. [2013] in the evaluation.®

4.4.2. Compared Methods and Results. The morphoRNN was proposed by Luong et al.
[2013], which has been introduced in Section 2. In their work, they proposed two kinds
of morphoRNNs: cimRNN, which is context insensitive, and csmRNN, which is context
sensitive. Since the context-sensitive models are consistently better than the context-
insensitive models as expected, we only compare KNET with their context-sensitive
models. In their experiments, they make use of two publicly available embeddings
provided by Collobert et al. [2011] and Huang et al. [2012] to initialize their models.
Following their notation, we denote these two morphoRNN models as C&W + ecsmRNN
and HSMN + e¢smRNN, which are the best models in their work. The results of these
two models and our KNET models are shown in Table II.

From the results, we can observe that the best model on WordSim-353 is HSMN +
csmRNN. As explained in Luong et al. [2013], the reason is that HSMN performs
well on frequent words and HSMN + ¢csmRNN uses the word embedding produced by
HSMN in the initialization. However, although HSMN + csmRNN can do a great job
on frequent words, its performance on RareWord is bad. C&W + csmRNN performs
better than HSMN + csmRNN on RareWord, but they are both beaten by the proposed
KNET models powered by different types of morphological knowledge, showing the
effectiveness of KNET. The advantage of our models is even greater on UnknownWords
in which every word pair contains at least one unknown word. Compared with Skip-
gram, our proposed model can greatly improve the performance on RareWord, while
the performance on WordSim-353 is flat. This is reasonable because the morphological
knowledge can help improve the quality of word embeddings for rare words, while it
can barely help words with already plenty context information especially in the low-
dimension embedding space. Note that the performance of the models in Table II is a
little worse than those in Table I, because the dimension of word embeddings is 50 on
wiki2010, while it is 100 on enwiki9.

Besides the promising performance on rare words, KNET has several other advan-
tages over morphoRNN.

Shttp://stanford.edu/ Imthang/morphoNLM/.

ACM Transactions on Information Systems, Vol. 34, No. 1, Article 4, Publication date: August 2015.

4:16 Q. Cui et al.

(1) KNET is much more efficient, since it does not need initialization by other word
embeddings. In contrast, C&W + csmRNN is initialized with the C&W embeddings,
which were trained for about 2 months. Furthermore, KNET is much more efficient
than morphoRNN models in both the language model and the recursive structure,
so that it can be trained in less than 20 minutes on a single machine with four cores.

(2) KNET is more robust, since it can benefit from the noisy knowledge by updating the
relation matrix and balancing between contextual information and morphological
knowledge. In contrast, morphoRNN models used a hierarchical structure to co-
consider the morphological knowledge and the contextual information, and thus
the noise accumulated in the morphological layer (the RNN structure) might be
propagated to the context layer (the language model).

(83) KNET is more flexible, since it can leverage not only the morpheme knowledge
but also other morphological knowledge types such as Edit and LCS, which is not
applicable for morphoRNN. Actually, KNET can leverage any kind of pairwise re-
lationship that can cover most of the relations in knowledge bases such as WordNet
and Freebase. We leave this for future work.

The best result of Qiu et al. [2014] on the RareWord dataset is 0.3288, which does not
beat C&W + csmRNN. In our understanding, the main reason is that directly leveraging
morphemes would bring more noise than word-level morphological knowledge, but their
model could not handle the noise that morphemes bring in since they did not update
the relation matrix. In addition, the flexibility of our framework is also an advantage
against their model. Their model can be regarded as a special case of our framework if
we replace the top similar words by morphemes.

4.5. Case Study

To further understand how KNET benefits from the noisy morphological knowledge,
we sampled some rare words and compared the closest words to them in different word
embedding spaces and morphological knowledge to check the effect of the learning
process. Specifically, for a given word, we extracted its representation vector in the
100-dimension embedding space, which we obtained in Section 4.3, and calculated
its cosine similarity with the representation vectors of all the other words. Then we
showed the five most similar words generated by the methods under investigation in
Table III. According to Table I, the combination of four types of knowledge achieved the
best performance on most tasks; therefore, we only show the results for the baseline
method (Skip-gram) and the combination method (Skip-gram + Combination Relation
Matrix). We also show the most similar words directly given by the combination of
the four types of knowledge without going through the learning process (denoted as
Combined Knowledge), which can give us an overview of how the original morphological
knowledge looks. Note that the baseline actually does a good job on frequent words and
the results of our model on those words are similar to the baseline, so we only sampled
some rare words to demonstrate the power of the KNET model.
From Table III, we have the following observations:

(1) We can see that the Skip-gram method often fails in finding reasonable semanti-
cally or syntactically related words for rare words. For example, uninformative only
appears 18 times in the training corpus, and thus its nearest neighbors are almost
random. According to the morphological knowledge (see the column of Combined
Knowledge), this word may have a relation with informative and formative. By
leveraging these relatively frequent words to enhance the embedding for uninfor-
mative, our model eventually generated a very effective embedding for this rare
word, and its similar words in the learned embedding space became much more
reasonable.

ACM Transactions on Information Systems, Vol. 34, No. 1, Article 4, Publication date: August 2015.

KNET: A General Framework for Learning Word Embedding Using Morphological Knowledge 4:17

Table Ill. Top Five Similar Words in the Embedding Spaces Produced by KNET Using the Combination of
Morphological Knowledge

Example Word ‘ Skip-gram Combined Knowledge ‘ Skip-gram + Combination Relation Matrix
uninformative monotherapy informative problematic
leg inchoative fallacious
electrodeposition inoperative inaccurate
astrophotography interrogative uninteresting
ultrafilters formative precisely
stepdaughter grandaughter daughters grandaughter
swynford daughter daughter
caesaris grandaughter daughters
theling steptoe wife
stepson slaughter stepfather
uncompetitive overvalued competitively competitive
monopsony competitive noncompetitive
skyrocketing noncompetitive profitable
dampened competitiveness competetive
undervalued competetive lucrative
tasteful hackneyed wasteful tastes
freshest distasteful piquant
haircuts tasted pretentious
nutritive distaste taste
teapots tastes elegance
weirdest swordfight weird weird
merseybeat weirdos fun
sty widest nostalghia
oversoul wildest weirdos
washroom nordeste skinflint

(2) We can also see that the morphological knowledge could be noisy in some cases. For
example, it suggests inchoative and interrogative to uninformative, because these
words share a substring ative with uninformative. However, they are neither syn-
tactically similar nor semantically similar. The power of our proposed framework
lies in that it can distinguish useful knowledge and noise by seeking help from
the contextual information and refine the tradeoff coefficients and the relationship
matrix to ensure the generation of a more reliable embedding. We can see that the
most similar words to uninformative in the final embedding space, such as prob-
lematic and inaccurate, are more semantically correlated to uninformative than
tnchoative and interrogative.

To sum up, the examples in Table III indicate that for rare words, (1) it is unreli-
able to learn their embeddings only from contexts, (2) morphological knowledge can
significantly improve the learned word representations if we can effectively deal with
the noise it brings in, and (3) contextual information can help in distinguishing use-
ful knowledge and noise. In this manner, our proposed KNET framework can achieve
the best performance, while the contextual information and morphological knowledge
reinforce each other.

4.6. Analysis of the Balancing Function

In this subsection, we give some empirical results on the influence of the balancing
function between the contextual information branch and the morphological knowledge
branch in the KNET framework. We expect that the greater the absolute value of

ACM Transactions on Information Systems, Vol. 34, No. 1, Article 4, Publication date: August 2015.

4:18 Q. Cui et al.

Counts
57 [- 1397
1310
1222
4 o 1135
1048
961
3 - 874
786
699
> L 612
524
437
350
263
176
88
1

cl/c2

T T T T T
0 20000 40000 60000 80000 100000
The indices of buckets
Fig. 3. The ratio of ¢1/co in different buckets.

the ratio of the tradeoff coefficients (i.e., ¢1/ce) is, the more the model relies on the
contextual information branch. By analyzing the variation of this ratio under different
settings, we can draw the following two conclusions:

(1) For a specific model, frequent words rely more on contextual information, while
rare words rely more on morphological knowledge.

(2) By comparing the overall weighted ratios of different models under different set-
tings, we can observe that (a) models relying more on contextual information per-
form better than those relying more on morphological knowledge on tasks mainly
composed of frequent words, and (b) models relying more on morphological knowl-
edge perform better than those relying more on contextual information on tasks
containing many rare words.

We give more detailed discussions about the two conclusions next.

4.6.1. Rare Words Rely More on Morphological Knowledge. We use the results of
Skip-gram + Combination Relation Matrix to illustrate the first conclusion. Note that
we observed a similar phenomenon for other models. As we want to carefully analyze
the behavior of words with different frequencies, we set the number of buckets & to
100,000 so that each bucket may only contain two words on average. The hexagon bin-
ning plot of ratios ¢y /cy in different buckets is shown in Figure 3, in which the indices
of the buckets are in the descending order according to the frequency; that is, the first
bucket contains the most frequent words and the last bucket contains the rarest words.
We took the absolute value for each ratio and fixed the ratios greater than 5 to be 5
so as to make the figure more readable. The grayscale of the hexagon represents the
number of points falling in that hexagon; that is, the hexagon is darker when more
points fall in it.

ACM Transactions on Information Systems, Vol. 34, No. 1, Article 4, Publication date: August 2015.

KNET: A General Framework for Learning Word Embedding Using Morphological Knowledge 4:19

—&— + Edit Relation Matrix ‘;
-4 -+ LGS Relation Matrix Ll
+ Morpheme Relation Matrix g (S
w _||-* + Syllable Relation Matrix s A
™ + Combination Relation Matrix AEE N\
B "«
A
N o | s 00
L o . .
— + - s .
o . . s
© x” Tx
o v | : % Y
= o .
O i s LY + .
il - \ i T
L L s = \ +
X e o = \
o | A ~ X
s -) o <]
- - A
- v X -
% - é— -
AZ
g ¢
= T T T T T T T
1 10 100 1000 10000 100000 1000000

The number of buckets

Fig. 4. The overall ratios of ¢1 /cg in different models while the number of buckets varies.

We can see in Figure 3 that the ratio ¢ /co is approximately decreasing as the indices
of the buckets increase, which indicates that frequent words have relatively higher
ratios of ¢1/cg than rare words. In other words, frequent words rely more on contex-
tual information and rare words rely more on morphological knowledge. By learning
the tradeoff coefficients, our model learns how to leverage morphological knowledge
according to word frequency automatically and effectively.

4.6.2. Models Relying More on Morphological Knowledge Perform Better on Rare Words. We
compare all the proposed knowledge-powered word embedding models under differ-
ent settings to illustrate the second conclusion. Specifically, we evaluated Skip-gram +
Edit/LCS/Morpheme/Syllable/Combination Relation Matrix that were trained with dif-
ferent numbers of buckets on WordSim-353 and RareWord. As WordSim-353 mainly
contains frequent words and RareWord contains many rare words, we can analyze the
results on these two datasets to estimate the performance on frequent words and rare
words. The overall ratio of each model is computed as the weighted sum of ¢; over all
buckets divided by the weighted sum of ¢y over all buckets as follows:

Y €Ll
Y Caini’
where n; is the number of words in the ith bucket.

The overall ratio of c¢1/cy of different models while the number of buckets varies
is shown in Figure 4.” We can see that the overall ratio is the highest when the
number of buckets lies in the middle, while it drops down as the number of buckets
moves to the two extremes. Besides, we can observe that the ratios of Skip-gram +
Morpheme/Syllable Relation Matrix are consistently higher than those of Skip-gram +
Edit/LCS/Combination Relation Matrix. Similar to Section 4.6.1, the model with the

c1/co =

"We only run experiments when the number of buckets is 1, 10, 100, 1,000, 10,000, 100,000, or 300,000 (the
maximum value) and connect the points in the figure.

ACM Transactions on Information Systems, Vol. 34, No. 1, Article 4, Publication date: August 2015.

4:20 Q. Cui et al.

P

o

S o+
(3r]
D o8 P Xo-..

| o i fank- (T
E ’ “\ $- R X
i ’ \ - g A L
g O——F—0_ "~~~ _ _ b ER
5 8 by TAN
gc S e v Y
» AT Y
5 ¥ v ‘\)
Q (AN *

8 g N A +
% o \ Q
= LW
S hn I

o —&— + Edit Relation Matrix g :
E <@ -4~ + LGS Relation Matrix b3 r A
o 2 + Morpheme Relation Matrix T ; d

%+ Syllable Relation Matrix vbr g
+ Combination Relation Matrix A o
K
o
3 B T T T T T T
1 10 100 1000 10000 100000 1000000

The number of buckets

Fig. 5. The performance of different models on WordSim-353 while the number of buckets varies.

lower ratio indicates that the model relies more on morphological knowledge. Therefore,
we can conclude that the models in the extremes with one or 300,000 buckets rely
more on morphological knowledge, and Skip-gram + Edit/LCS/Combination Relation
Matrix rely more on morphological knowledge. In Figure 6, we want to show that
these models perform better on datasets with many rare words, that is, RareWord,
and thus, the points of Skip-gram + Edit/LCS/Combination Relation Matrix should be
on the top and the curves should be convex downward. In Figure 5, we want to show
the opposite conclusion, that models in the middle with 1,000 buckets rely more on
contextual information and perform better on datasets with more frequent words, that
is, WordSim-353, and thus, the curves should be roughly convex upward. Here follows
the detailed discussion.

The performance of these models on WordSim-353 is shown in Figure 5. The trend
is not stable, probably due to the uncertainty brought by the small size of WordSim-
353. However, we can roughly draw the conclusion that (1) most models in the middle
perform better than those in the extremes, and (2) Skip-gram + Morpheme/Syllable
Relation Matrix perform better than other models in most cases. The trend of the
model performance on WordSim-353 is consistent with the overall ratio in Figure 4,
which implies that models relying more on contextual information perform better on
frequent words.

The performance of these models on RareWord is shown in Figure 6. The trend is
very clear and we can easily observe that it is strictly opposite to the overall ratio
of ¢1/co in Figure 4. The models in the two extremes achieve the best performance
and Skip-gram + Edit/LCS/Combination Relation Matrix perform better than others.
Considering these models have a lower overall ratio of ¢;1/cy and thus rely more on
morphological knowledge, we can conclude that models relying more on morphological
knowledge perform better on rare words.

Note that the points at which the number of buckets is the maximal (which means
there is only one word in each bucket) look a little strange. The reason is that the c;
and cg of rare words have very little opportunity to be updated when the buckets are

ACM Transactions on Information Systems, Vol. 34, No. 1, Article 4, Publication date: August 2015.

KNET: A General Framework for Learning Word Embedding Using Morphological Knowledge 4:21

8

=}

—=— + Edit Relation Matrix
-#£-- 4+ LCS Relation Matrix

Kg o + + Morpheme Relation Matrix o]
- S ¥+ Syllable Relation Matrix
B + Combination Relation Matrix A
g 8 e s . O
§° A A
as e
S 2 & Aissx

(=] , h s .
m , .
8] O— o - s *
g | .
£ < A

rd . ,
.8 <, g / ’
o = N o e g X
o o i & N .
Yep . 2 Fa¥ -
+ . - -
o | R e
S 5 -
T T T T T T T
1 10 100 1000 10000 100000 1000000

The number of buckets

Fig. 6. The performance of different models on RareWord while the number of buckets varies.

very sparse. Further considering that the initializations of ¢; and cg are both 0.5, which
results in the middle values of the ratio ¢ /cg, we can understand why the corresponding
model performance tends to be in the middle.

By analyzing the balancing function, we can also draw an empirical conclusion about
how to tune the number of buckets. Setting the number of buckets to the minimum
(one bucket) or near the maximum (the size of vocabulary) will help learning bet-
ter word representations of rare words, while setting the number of buckets to some
middle quantity will benefit the frequent words. One can choose the proper range of
this parameter according to his or her specific task and conduct a grid search in this
range.

5. CONCLUSIONS AND FUTURE WORK

We proposed a novel neural network framework called KNET to leverage morpho-
logical word similarity to learn high-quality word embeddings. The framework con-
tains a contextual information branch to leverage word co-occurrence information
and a morphological knowledge branch to leverage the morphological relationship
between words. We tested the framework on several tasks, and the results show
that it can produce enhanced word representations compared with the state-of-the-art
models.

The KNET framework is robust because it can refine the noisy knowledge and balance
between contextual information and morphological knowledge. In real applications, the
robustness of our framework allows us to leverage more general knowledge.

The KNET framework is also very flexible. One can easily change the word em-
bedding model and use another type of knowledge or use another balance function,
because the KNET framework provides the two-branch structure, the relation layer
with update procedure, and the balancing principle accordingly.

The KNET framework is particularity beneficial for rare words in the application,
and thus it is suitable for other morphologically complex languages such as Finnish or

ACM Transactions on Information Systems, Vol. 34, No. 1, Article 4, Publication date: August 2015.

4:22 Q. Cui et al.

Turkish, especially when the amount of text data is limited but the vocabularies are
huge. We will leave it as our future work.

APPENDIX
A. THE BACK-PROPAGATION ALGORITHM AND THE LEARNING PROCESS OF KNET

We will introduce the standard back-propagation algorithm in Section A.1 and show
how to apply the algorithm to our model in Section A.2.

A.1. The Back-Propagation Algorithm

This algorithm can be found in every textbook related to neural networks. We just give a
simple introduction.? As shown in Figure 1, the KNET framework has two branches, the
contextual information branch and the morphological knowledge branch. For simplicity,
we will use the morphological knowledge branch as an example to explain the back-
propagation process in Section A.1.

We let n; denote the number of layers in the neural network; thus, we have n; = 5
in the morphological knowledge branch. We label layer [as L;, so layer L; is the input
layer, and layer L,, is the output layer. Our morphological branch has parameters
(W, b) = (WD, WO W& W®W) where we write Wi(Jl-) to denote the parameter (or weight)
associated with the connection between unit j in layer / and unit i in layer / + 1. (Note
the order of the indices.) In our morphological branch, W& = RT W@ = M7 W® =
diag(cg), W* = M'T | where MT is the transpose of M and diag(cy) is the diagonal

matrix with the diagonal elements all equal to cs. We use agl) to denote the activation

(meaning output value) of unit ; in layer . We also let zgl) denote the total weighted

sum of inputs to unit i in layer /, so that o\’ = £(z\"). In our models, we do not use the

activation function (except the output layer) and bias term, so the forward propagation
is simply a®*) = WDq®.

We have introduced the forward propagation in Section 3.2, such as Equations (5)
and (6). Our output layer outputs the conditional probability p(w;,;|w;). By using NEG,

we actually approximate p(w; ;|w;) with o(v,’UHijw,). We define the cost function as

Equation (3), denoted as J(W) here. In the experiments, we initialized the weights in R
with the similarity scores, ¢; = ¢co = 0.5, and all the other weights with small random
values.
Next, we will describe how back-propagation can be used to compute #J (W;x,y)
ij
and the partial derivatives of the cost function J(W, b;x, y) defined with respect to a
single example (x, y).
The intuition behind the back-propagation algorithm is as follows. Given a training
example (x, y), we will first run a forward pass to compute all the activations throughout

the network, including the output value of the conditional probability. Then, for each

node i in layer [, we would like to compute an error term 5" that measures how
much that node was responsible for any errors in our output. In detail, here is the
back-propagation algorithm:

(1) Perform a feed-forward pass, computing the activations for layers Lo, L3, and so on
up to the output layer L,,.

8http://deeplearning.stanford.edu/wiki/index.php/UFLDL_Tutorial.

ACM Transactions on Information Systems, Vol. 34, No. 1, Article 4, Publication date: August 2015.

http://deeplearning.stanford.edu/wiki/index.php/UFLDL_Tutorial.

KNET: A General Framework for Learning Word Embedding Using Morphological Knowledge 4:23

(2) For each output unit i in layer n; (the output layer), set

5™ aém>LwlogU(ULvaJ-+(1-—y010g0(“”%T”wJ]
13

= y(1- o(v;)iva,)) -(1- yi)o(v:Uiva,),

where y; = 1 when it is the positive sample; that is, w; is the real word in the
context, and y; = 0 when it is the negative sample.
3) Forl=m —-1,m;—2,m —3,...,2, for each node i in layer [, set

Si+1
O _) ¢+1)
s =Y "Wsiy.
j=1

(4) Compute the desired partial derivatives, which is given as
d

@
Ly

.) oU+1)
J(W;x,y) =a; 8.

With the gradient, we can apply gradient descent to update the parameters W as
follows:
d

0
ij

J(W).

O _ wo

Here « is the learning rate. We set it to 0.025 in all our experiments.

A.2. The Learning Process of the KNET Framework

With the help of the standard back-propagation algorithm, our learning process is quite
natural except for these three aspects:

(1) The KNET framework has two branches. In the architecture, they share the input
layer, the v,, layer, and the output layer. Thus, in the back-propagation process,
we only need to update M’ once. For the other layers, we regard the architecture
as two separate branches and update the parameters separately.

(2) For the shared parameters matrix M in two branches, we simply store just one
copy and update it twice, that is, one round in the contextual information branch
and the other round in the morphological knowledge branch.

(3) For the shared parameters cq, co in the diagonal matrix, we actually store just
one copy and sum the gradient of all edges to update it. You can also regard the
procedure as updating it several times. Since we have different c1, ¢y for different
words, we will use the proper parameter for each input word.

Besides these three aspects, the learning process is the same with the standard
back-propagation algorithm introduced in Section A.1.

REFERENCES

Y. Bengio and J.-S. Senecal, and others. 2003. Quick Training of Probabilistic Neural Nets by Importance
Sampling.

Y. Bengio and J.-S. Senecal. 2008. Adaptive importance sampling to accelerate training of a neural proba-
bilistic language model. Trans. Neur. Netw. 19, 4, 713-722.

J. Bian, B. Gao, and T.-Y. Liu. 2014. Knowledge-powered deep learning for word embedding. In Proc. of
ECML/PKDD.

D. M. Blei, A. Y. Ng, and M. Jordan. 2003. Latent Dirichlet allocation. The Journal of Machine Learning
Research 3, 993-1022.

ACM Transactions on Information Systems, Vol. 34, No. 1, Article 4, Publication date: August 2015.

4:24 Q. Cui et al.

A. Bordes, J. Weston, R. Collobert, Y. Bengio, and others. 2011. Learning structured embeddings of knowledge
bases. In AAAI.

J. W. Chapman. 1998. Language prediction skill, phonological recoding ability, and beginning reading. Read-
ing and Spelling: Development and Disorders, 33.

R. Collobert and J. Weston. 2008. A unified architecture for natural language processing: Deep neural
networks with multitask learning. In ICML. ACM, New York, NY, 160-167.

R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and P. Kuksa. 2011. Natural language
processing (almost) from scratch. JMLR 12, 2493-2537.

M. Creutz and K. Lagus. 2007. Unsupervised models for morpheme segmentation and morphology learning.
ACM Transactions on Speech and Language Processing (TSLP) 4, 1 (January 2007), 3.

L. Deng, X. He, and J. Gao. 2013. Deep stacking networks for information retrieval. In ICASSP. 3153-3157.

L. C. Ehri. 2005. Learning to read words: Theory, findings, and issues. Scientific Studies of Reading 9, 2,
167-188.

L. C. Ehri, R. Barr, M. L. Kamil, P. Mosenthal, and P. D. Pearson. 1991. Development of the ability to read
words. Handbook of Reading Research 2, 383-417.

L. Finkelstein, E. Gabrilovich, Y. Matias, E. Rivlin, Z. Solan, G. Wolfman, and E. Ruppin. 2001. Placing
search in context: The concept revisited. In Proceedings of the 10th International Conference on World
Wide Web. ACM, 406-414.

X. Glorot, A. Bordes, and Y. Bengio. 2011. Domain adaptation for large-scale sentiment classification: A deep
learning approach. In Proceedings of the 28th International Conference on Machine Learning (ICML11).
513-520.

U. Goswami. 1986. Children’s use of analogy in learning to read: A developmental study. Journal of Experi-
mental Child Psychology. 42, 1, 73-83.

M. U. Gutmann and A. Hyvérinen. 2012. Noise-contrastive estimation of unnormalized statistical models,
with applications to natural image statistics. /. Mach. Learn. Res. 13, 307-361.

G. E. Hinton, J. L. McClelland, and D. E. Rumelhart. 1986. Distributed representations. In Parallel Dis-
tributed Processing: Explorations in the Microstructure of Cognition. MIT Press, 3:1137-1155.

T. Hofmann. 1999. Probabilistic latent semantic analysis. In Proceedings of the Fifteenth Conference on
Uncertainty in Artificial Intelligence. Morgan Kaufmann Publishers Inc., 289-296.

E. H. Huang, R. Socher, C. D. Manning, and A. Y. Ng. 2012. Improving word representations via global
context and multiple word prototypes. In Proceedings of the 50th Annual Meeting of the Association for
Computational Linguistics: Long Papers-Volume 1. Association for Computational Linguistics, 873—-882.

F. M. Liang. 1983. Word Hy-phen-a-tion by Com-put-er (Hyphenation, Computer). Stanford University, Stan-
ford, CA, USA.

M.-T. Luong, R. Socher, and C. D. Manning. 2013. Better word representations with recursive neural networks
for morphology. CoNLL-2013. 104.

T. Mikolov. 2012. Statistical Language Models Based on Neural Networks. Ph.D. Dissertation. Brno
University of Technology.

T. Mikolov, K. Chen, G. Corrado, and J. Dean. 2013a. Efficient estimation of word representations in vector
space (ICLR’13).

T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. 2013b. Distributed representations of words
and phrases and their compositionality. In NIPS. 3111-3119.

A. Mnih and G. E. Hinton. 2008. A scalable hierarchical distributed language model. In NIPS. 1081-1088.

A. Mnih and K. Kavukcuoglu. 2013. Learning word embeddings efficiently with noise-contrastive estimation.
In NIPS. 2265-2273.

A Mnih and Y. W. Teh. 2012. A fast and simple algorithm for training neural probabilistic language models.
In ICML. Omnipress, New York, NY, 1751-1758.

F. Morin and Y. Bengio. 2005. Hierarchical probabilistic neural network language model. In AISTATS.
246-252.

A. El-Desoky Mousa, H.-K. J. Kuo, L. Mangu, and H. Soltau. 2013. Morpheme-based feature-rich language
models using deep neural networks for Ivesr of egyptian arabic. In Proceedings of the 2013 IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 8435-8439.

S. Qiu, Q. Cui, J. Bian, B. Gao, and T.-Y. Liu. 2014. Co-learning of word representations and morpheme
representations. In Proc. of COLING.

R. Socher, D. Chen, C. D. Manning, and A. Ng. 2013. Reasoning with neural tensor networks for knowledge
base completion. In NIPS. 926-934.

ACM Transactions on Information Systems, Vol. 34, No. 1, Article 4, Publication date: August 2015.

KNET: A General Framework for Learning Word Embedding Using Morphological Knowledge 4:25

R. Socher, C. C. Lin, A. Y. Ng, and C. D. Manning. 2011. Parsing natural scenes and natural language with
recursive neural networks. In Proceedings of the 28th International Conference on Machine Learning
(ICML11). 129-136.

H. Sperr, J. Niehues, and A. Waibel. 2013. Letter n-gram-based input encoding for continuous space language
models. In Proceedings of the Workshop on Continuous Vector Space Models and their Compositionality.
30-39.

J. P. Turian, L.-A. Ratinov, and Y. Bengio. 2010. Word representations: A simple and general method for
semi-supervised learning. In ACL. 384-394.

P. D. Turney. 2013. Distributional semantics beyond words: Supervised learning of analogy and paraphrase.
TACL, 353-366.

P. D. Turney and P. Pantel. 2010. From frequency to meaning: Vector space models of semantics. Journal of
Artificial Intelligence Research 37, (Jan 2010), 141-188.

J. Weston, A. Bordes, O. Yakhnenko, and N. Usunier. 2013. Connecting language and knowledge bases with
embedding models for relation extraction. arXiv preprint arXiv:1307.7973.

M. Yu and M. Dredze. 2014. Improving lexical embeddings with semantic knowledge. In Association for
Computational Linguistics (ACL). 545-550.

Received May 2014; revised June 2015; accepted June 2015

ACM Transactions on Information Systems, Vol. 34, No. 1, Article 4, Publication date: August 2015.

